首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15752篇
  免费   2800篇
  国内免费   1844篇
化学   11277篇
晶体学   164篇
力学   1143篇
综合类   72篇
数学   1681篇
物理学   6059篇
  2024年   38篇
  2023年   339篇
  2022年   492篇
  2021年   549篇
  2020年   632篇
  2019年   588篇
  2018年   532篇
  2017年   485篇
  2016年   838篇
  2015年   728篇
  2014年   926篇
  2013年   1137篇
  2012年   1465篇
  2011年   1450篇
  2010年   983篇
  2009年   925篇
  2008年   1075篇
  2007年   950篇
  2006年   860篇
  2005年   763篇
  2004年   530篇
  2003年   438篇
  2002年   424篇
  2001年   351篇
  2000年   306篇
  1999年   327篇
  1998年   272篇
  1997年   239篇
  1996年   272篇
  1995年   267篇
  1994年   188篇
  1993年   148篇
  1992年   153篇
  1991年   146篇
  1990年   125篇
  1989年   103篇
  1988年   86篇
  1987年   68篇
  1986年   51篇
  1985年   42篇
  1984年   30篇
  1983年   27篇
  1982年   14篇
  1981年   16篇
  1980年   9篇
  1978年   2篇
  1972年   1篇
  1957年   6篇
排序方式: 共有10000条查询结果,搜索用时 609 毫秒
881.
In this work, a novel, rapid, and simple analytical method was proposed for the detection of parabens in milk sample by gas chromatography coupled with mass spectrometry. At the same time, milk sample was pretreated by magnetic solid phase extraction, which detected up to five parabens. A series of important parameters of magnetic solid phase extraction were investigated and optimized, such as pH value of loading buffer, amount of material, adsorption time, ionic strength, eluting solvents, and eluting time. Under the optimized conditions, the corresponding values were more than 0.9991, limits of detection and the limit of quantification were 0.1 and 0.5 ng/mL, respectively. In addition, the recoveries were achieved in range of 95–105%, the liner range were within 0.1–600 ng/mL, and the relative standard deviations were even lower than 5%.  相似文献   
882.
Hydrosoluble trehalose lipid (a biosurfactant) was employed for the first time as a green extraction solution to extract the main antioxidant compounds (geniposidic acid, chlorogenic acid, caffeic acid, and rutin) from functional plant tea (Eucommia ulmoides leaves). Single‐factor tests and response surface methodology were employed to optimize the extraction conditions for ultrasound‐assisted micellar extraction combined with ultra‐high‐performance liquid chromatography in succession. A Box‐Behnken design (three‐level, three‐factorial) was used to determine the effects of extraction solvent concentration (1–5 mg/mL), extraction solvent volume (5–15 mL), and extraction time (20–40 min) at a uniform ultrasonic power and temperature. In consequence, the best analyte extraction yields could be attained when the trehalose lipid solution concentration was prepared at 3 mg/mL, the trehalose lipid solution volume was 10 mL and the extraction time was set to 35 min. In addition, the recoveries of the antioxidants from Eucommia ulmoides leaves analyzed by this analytical method ranged from 98.2 to 102%. These results indicated that biosurfactant‐enhanced ultrasound‐assisted micellar extraction coupled with a simple ultra‐high‐performance liquid chromatography method could be effectively applied in the extraction and analysis of antioxidants from Eucommia ulmoides leaf samples.  相似文献   
883.
Yuan  Jun  Zhang  Chujun  Chen  Honggang  Zhu  Can  Cheung  Sin Hang  Qiu  Beibei  Cai  Fangfang  Wei  Qingya  Liu  Wei  Yin  Hang  Zhang  Rui  Zhang  Jidong  Liu  Ye  Zhang  Huotian  Liu  Weifang  Peng  Hongjian  Yang  Junliang  Meng  Lei  Gao  Feng  So  Shukong  Li  Yongfang  Zou  Yingping 《中国科学:化学(英文版)》2020,63(8):1159-1168
Recent advances in material design for organic solar cells(OSCs) are primarily focused on developing near-infrared nonfullerene acceptors, typically A-DA′D-A type acceptors(where A abbreviates an electron-withdrawing moiety and D, an electron-donor moiety), to achieve high external quantum efficiency while maintaining low voltage loss. However, the charge transport is still constrained by unfavorable molecular conformations, resulting in high energetic disorder and limiting the device performance. Here, a facile design strategy is reported by introducing the "wing"(alkyl chains) at the terminal of the DA′D central core of the A-DA′D-A type acceptor to achieve a favorable and ordered molecular orientation and therefore facilitate charge carrier transport. Benefitting from the reduced disorder, the electron mobilities could be significantly enhanced for the"wing"-containing molecules. By carefully changing the length of alkyl chains, the mobility of acceptor has been tuned to match with that of donor, leading to a minimized charge imbalance factor and a high fill factor(FF). We further provide useful design strategies for highly efficient OSCs with high FF.  相似文献   
884.
We have developed a facile and efficient procedure for the synthesis of diarylphosphate esters and amides. Using Zn(acac)2 as the catalyst, the reaction of diarylphosphoryl azides with aliphatic alcohols and phenols through an unusual P?N bond cleavage provided a number of diarylphosphate esters in good yields (22 examples, up to 94%). Additionally, various diarylphosphate amides were obtained from the corresponding amines in excellent yields as well (8 examples, up to 96%).  相似文献   
885.
Correction for ‘Cu-catalyzed C–C bond formation of vinylidene cyclopropanes with carbon nucleophiles’ by Jichao Chen et al., Chem. Sci., 2019, 10, 10601–10606.

We regret that in the original article the structure of compound 1 in Tables 1–3 was incorrect. The correct structure is given below.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   
886.
Zhang  X. L.  Hu  Y.  Gao  R. X.  Ge  S. X.  Zhang  D. X. 《Fluid Dynamics》2022,56(1):S34-S52

The microfluidic chip for nucleic acid detection in vitro is an essential application of microfluidic technology to the process of in vitro diagnosis. The 90° bend microchannels in chip designed for facilitating assay reagent delivery may cause reagent residues and cast mutual contamination between detection reagents, which significantly affects the detection accuracy. In this paper, a two-dimensional gas–liquid two-phase flow model is constructed to simulate the liquid residue phenomenon. Using the results of simulation, the residual liquid generation can be observed and the area of residual liquid can be obtained. The accuracy of the numerical simulation is verified by comparison with the experimental results. The effects of the fillet radius R, the diameter ratio d1/d2 of the vertical to horizontal sections, the flow velocity v, and the surface roughness Ra on the residual amount are studied. We find that the fillet radius is inversely proportional to the residual amount within the range v = 20–100 mm/s and there is almost no liquid residue in the channel when the radius increases to R = 1 mm. When the channel diameter ratio d1/d2 increases, the liquid residual amount also increases by approximately 98%. The increased surface roughness Ra significantly increases the residual amount. The results of this study provide a reference for the optimal design of microchannels on chips.

  相似文献   
887.
Nie  Linlin  Luo  Yiling  Gao  Wei  Zhou  Miaolei 《Nonlinear dynamics》2022,108(3):2023-2043
Nonlinear Dynamics - Hysteresis is an inherent characteristic of piezoelectric materials that can be determined by not only the historical input but also the input signal frequency. Hysteresis...  相似文献   
888.
Gao  Shuai  Han  Qinkai  Zhou  Ningning  Zhang  Feibin  Yang  Zhaohui  Chatterton  Steven  Pennacchi  Paolo 《Nonlinear dynamics》2022,109(1):177-202

34,354,966 active cases and 460,787 deaths because of COVID-19 pandemic were recorded on November 06, 2021, in India. To end this ongoing global COVID-19 pandemic, there is an urgent need to implement multiple population-wide policies like social distancing, testing more people and contact tracing. To predict the course of the pandemic and come up with a strategy to control it effectively, a compartmental model has been established. The following six stages of infection are taken into consideration: susceptible (S), asymptomatic infected (A), clinically ill or symptomatic infected (I), quarantine (Q), isolation (J) and recovered (R), collectively termed as SAIQJR. The qualitative behavior of the model and the stability of biologically realistic equilibrium points are investigated in terms of the basic reproduction number. We performed sensitivity analysis with respect to the basic reproduction number and obtained that the disease transmission rate has an impact in mitigating the spread of diseases. Moreover, considering the non-pharmaceutical and pharmaceutical intervention strategies as control functions, an optimal control problem is implemented to mitigate the disease fatality. To reduce the infected individuals and to minimize the cost of the controls, an objective functional has been constructed and solved with the aid of Pontryagin’s maximum principle. The implementation of optimal control strategy at the start of a pandemic tends to decrease the intensity of epidemic peaks, spreading the maximal impact of an epidemic over an extended time period. Extensive numerical simulations show that the implementation of intervention strategy has an impact in controlling the transmission dynamics of COVID-19 epidemic. Further, our numerical solutions exhibit that the combination of three controls are more influential when compared with the combination of two controls as well as single control. Therefore, the implementation of all the three control strategies may help to mitigate novel coronavirus disease transmission at this present epidemic scenario.

  相似文献   
889.
为探究复合保鲜涂膜中AgNPs的迁移情况,采用酶提取的前处理方式,结合单颗粒电感耦合等离子体质谱(SP-ICP-MS),考察了前处理方式、驻留时间、校准方式以及Ag+浓度等条件对AgNPs准确测定的影响。结果表明:0.1 g樱桃番茄样品在柠檬酸盐体系下使用0.2 g的R-10离析酶可达到消解最适酶剂量;当驻留时间小于100 μs时,测定结果有较好的积分条件以及较高的信背比;采用AgNP尺寸方式进行校准比单独用Ag+标准溶液校准方式的颗粒尺寸测定结果更加准确。采用该方法测定樱桃番茄中加标AgNPs颗粒回收率达到88.9%,粒径实测值为47.8±0.3 nm,粒径检出限为13 nm,颗粒浓度检出限为 7.5×104 particles/L。通过将樱桃番茄暴露于AgNPs涂膜中来探究AgNPs迁移行为,复合保鲜涂膜后的樱桃番茄通过三次洗涤后能够在表面去除大部分AgNPs,但仍有少量AgNPs穿过果表皮浸入果肉组织。该方法灵敏度高,操作简单,能够为揭示AgNPs在农产品及农业生产中的风险提供可靠、准确的表征方法。  相似文献   
890.
Micropores are the primary sites for methane occurrence in coal. Studying the regularity of methane occurrence in micropores is significant for targeted displacement and other yield-increasing measures in the future. This study used simplified graphene sheets as pore walls to construct coal-structural models with pore sizes of 1 nm, 2 nm, and 4 nm. Based on the Grand Canonical Monte Carlo (GCMC) and molecular dynamics theory, we simulated the adsorption characteristics of methane in pores of different sizes. The results showed that the adsorption capacity was positively correlated with the pore size for pure gas adsorption. The adsorption capacity increased with pressure and pore size for competitive adsorption of binary mixtures in pores. As the average isosteric heat decreased, the interaction between the gas and the pore wall weakened, and the desorption amount of CH4 decreased. In ultramicropores, the high concentration of CO2 (50–70%) is more conducive to CH4 desorption; however, when the CO2 concentration is greater than 70%, the corresponding CH4 adsorption amount is meager, and the selected adsorption coefficient SCO2/CH4 is small. Therefore, to achieve effective desorption of methane in coal micropores, relatively low pressure (4–6 MPa) and a relatively low CO2 concentration (50–70%) should be selected in the process of increasing methane production by CO2 injection in later stages. These research results provide theoretical support for gas injection to promote CH4 desorption in coal pores and to increase yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号