首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3034篇
  免费   521篇
  国内免费   609篇
化学   2525篇
晶体学   60篇
力学   169篇
综合类   14篇
数学   363篇
物理学   1033篇
  2024年   19篇
  2023年   52篇
  2022年   98篇
  2021年   109篇
  2020年   148篇
  2019年   141篇
  2018年   114篇
  2017年   96篇
  2016年   150篇
  2015年   161篇
  2014年   145篇
  2013年   228篇
  2012年   223篇
  2011年   242篇
  2010年   222篇
  2009年   249篇
  2008年   252篇
  2007年   232篇
  2006年   178篇
  2005年   180篇
  2004年   133篇
  2003年   123篇
  2002年   150篇
  2001年   137篇
  2000年   59篇
  1999年   65篇
  1998年   39篇
  1997年   15篇
  1996年   24篇
  1995年   29篇
  1994年   21篇
  1993年   23篇
  1992年   22篇
  1991年   26篇
  1990年   17篇
  1989年   10篇
  1988年   3篇
  1987年   8篇
  1986年   4篇
  1985年   7篇
  1982年   1篇
  1979年   3篇
  1977年   3篇
  1974年   1篇
  1957年   1篇
  1955年   1篇
排序方式: 共有4164条查询结果,搜索用时 15 毫秒
131.
Sodium metal anodes have attracted significant attention due to their high specific capacity,low redox potential and abundant resources.However,the dendrites and unstable solid electrolyte interphase(SEI)of sodium anodes restrict the development of sodium metal batteries.This review includes the recent progress on the Na anode protection in sodium metal batteries.The strategies are summarized as modified three-dimensional current collectors,artificial solid electrolyte interphases,and electrolyte modifications.Conclusions and perspectives are envisaged for the further understanding and development of Na metal anodes.  相似文献   
132.
n-Alkanes have been widely used as phase change materials (PCMs) for thermal energy storage applications because of their exceptional phase transition performance, high chemical stability, long term cyclic stability and non-toxicity. However, the thermodynamic properties, especially heat capacity, of n-alkanes have rarely been comprehensively investigated in a wide temperature range, which would be insufficient for design and utilization of n-alkanes-based thermal energy storage techniques. In this study, the thermal properties of n-alkanes (C18H38-C22H46), such as thermal stability, thermal conductivity, phase transition temperature and enthalpy were systematically studied by different thermal analysis and calorimetry methods, and compared with previous results. Thermodynamic property of these n-alkanes was studied in a wide temperature range from 1.9 K to 370 K using a combined relaxation (Physical Property Measurement System, PPMS), differential scanning and adiabatic calorimetry method, and the corresponding thermodynamic functions, such as entropy and enthalpy, were calculated based on the heat capacity curve fitting. Most importantly, the heat capacities and related thermodynamic functions of n-heneicosane and n-docosane were reported for the first time in this work, as far as we know. This research work would provide accurate and reliable thermodynamic properties for further study of n-alkanes-based PCMs for thermal energy storage applications.  相似文献   
133.
易莹  樊敏  李权 《化学教育》2021,42(21):1-6
铂是一种化学性质极其稳定的贵金属,铂、铂合金以及铂配合物在催化剂、医药、传感器等领域具有重要应用。简要介绍铂的发现史、自然分布与资源现状、铂的应用等3个方面,其中铂的应用,重点从铂基催化剂、铂合金纳米材料、发光铂配合物、铂类抗癌药物等4个方面展开介绍。  相似文献   
134.
邹紫微  王全  王磊 《化学教育》2021,42(21):7-16
“变化观念与平衡思想”学科核心素养的系统构成对开展“素养导向”的教学与评价具有重要意义。通过课标分析,基于学科能力模型明确了高中必修学段“变化观念与平衡思想”核心素养的核心知识与活动经验、认识方式、研究对象及问题情境、学科能力活动及其表现等4个维度的具体内涵,系统建构了高中化学必修课程“变化观念与平衡思想”学科核心素养模型。  相似文献   
135.
用高效疏水色谱法对多种脲变α-淀粉酶折叠中间体的研究   总被引:1,自引:0,他引:1  
用高效疏水色谱法对用脲变性的α-淀粉酶的体外折叠中间体进行了分离,发现脲变α-淀粉酶折叠至少有19个中间体,而且,这些中间体在色谱流出液中可稳定一周.这一结论已由电泳、离子交换色谱和体积排阻色谱法证实.此外,还用紫外吸收光谱和荧光发射光谱研究了这些折叠中间体与天然α-淀粉酶构象之间的差异.  相似文献   
136.
137.
1,4-双-(二硫代羧基)哌嗪乙基聚合物的合成及其吸附性能   总被引:9,自引:0,他引:9  
崔元臣  陈权  马跃东 《应用化学》2002,19(10):968-0
固相合成;1;4-双-(二硫代羧基)哌嗪乙基聚合物的合成及其吸附性能  相似文献   
138.
An unusual tetra‐nuclear linear cyanido‐bridged complex [Ru2(μ‐ap)4‐CN‐Ru2(μ‐ap)4](BPh4) ( 1 ) (ap=2‐anilinopyridinate) has been synthesized and well characterized. The crystallographic data, magnetic measurement, IR, EPR and theoretical calculation results demonstrate that complex 1 is the first example of mixed spin Ru25+‐based complex with uncommon electronic configurations of S=1/2 for the cyanido‐C bound Ru25+ and S=3/2 for the cyanido‐N bound Ru25+. This phenomenon can be understood by the theoretical calculation results that from the precursor Ru2(μ‐ap)4(CN) (S=3/2) to complex 1 the energy gap between π* and δ* orbitals of the cyanido‐C bound Ru25+ core increases from 0.57 to 1.61 eV due to the enhancement of asymmetrical π back‐bonding effect, but that of the cyanido‐N bound Ru25+ core is essential identical (0.56 eV). Besides, the analysis of UV/Vis‐NIR spectra suggests that there exists metal to metal charge transfer (MMCT) from the cyanido‐N bound Ru25+ (S=3/2) to the cyanido‐C bound Ru25+ (S=1/2), supported by the TDDFT calculations.  相似文献   
139.
The existence of a homeostatic mechanism regulating reactive oxygen/nitrogen species (ROS/RNS) amounts inside phagolysosomes has been invoked to account for the efficiency of this process but could not be unambiguously documented. Now, intracellular electrochemical analysis with platinized nanowire electrodes (Pt‐NWEs) allowed monitoring ROS/RNS effluxes with sub‐millisecond resolution from individual phagolysosomes impacting onto the electrode inserted inside a living macrophage. This shows for the first time that the consumption of ROS/RNS by their oxidation at the nanoelectrode surface stimulates the production of significant ROS/RNS amounts inside phagolysosomes. These results establish the existence of the long‐postulated ROS/RNS homeostasis and allows its kinetics and efficiency to be quantified. ROS/RNS concentrations may then be maintained at sufficiently high levels for sustaining proper pathogen digestion rates without endangering the macrophage internal structures.  相似文献   
140.
原位氧化还原沉淀水热合成法制备LixMn2O4尖晶石   总被引:3,自引:0,他引:3  
Li xMn2O4尖晶石是新一代的锂离子二次电池正极材料 [1], 其合成方法对材料的电化学性质影响很大[2].常规合成大多采用高温固相反应法, 此法具有反应温度高, 反应时间长, 容易产生缺陷和产物不纯净等缺点, 导致所合成的锂离子二次电池正极材料的性能较差. 目前用水热合成法制备电池正极材料Li xMn2O4尖晶石尚未见文献报道. 本文在常规水热合成法的基础上采用原位氧化还原沉淀水热合成法 [3]制备前驱物, 该法合成条件更温和, 而且使材料的综合性能得到了改善和提高.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号