首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12851篇
  免费   2015篇
  国内免费   1766篇
化学   9286篇
晶体学   164篇
力学   766篇
综合类   133篇
数学   1621篇
物理学   4662篇
  2024年   45篇
  2023年   180篇
  2022年   392篇
  2021年   441篇
  2020年   446篇
  2019年   450篇
  2018年   407篇
  2017年   389篇
  2016年   556篇
  2015年   588篇
  2014年   741篇
  2013年   925篇
  2012年   1077篇
  2011年   1215篇
  2010年   875篇
  2009年   892篇
  2008年   1011篇
  2007年   870篇
  2006年   798篇
  2005年   604篇
  2004年   457篇
  2003年   372篇
  2002年   415篇
  2001年   353篇
  2000年   326篇
  1999年   271篇
  1998年   202篇
  1997年   180篇
  1996年   207篇
  1995年   173篇
  1994年   113篇
  1993年   107篇
  1992年   89篇
  1991年   86篇
  1990年   67篇
  1989年   67篇
  1988年   39篇
  1987年   42篇
  1986年   37篇
  1985年   25篇
  1984年   19篇
  1983年   22篇
  1982年   14篇
  1981年   10篇
  1980年   5篇
  1979年   4篇
  1974年   4篇
  1972年   4篇
  1971年   3篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
21.
He P  Ye J  Fang Y  Anzai J  Osa T 《Talanta》1997,44(5):885-890
Based on self-assembled biotinylated disulfide derivative monolayer on gold electrode, the sensors immobilized monolayer or multilayer membranes composed of avidin and biotinlabeled glucose oxidase (B.GOD) or of avidin-B.GOD complex (ABC) and B.COD were prepared. The present technique may be useful for controlling the enzyme content of the sensors in molecular level by repeating the deposition of enzyme layers. The sensors have the characteristics of shorter response time, higher sensitivity. The linear range is from 6.0 x 10(-6) - 5.0 x 10(-3) M. The sensor can be used for more than 1 month and can be reactivated. The sensor was used to determine glucose in human blood serum, and the results are satisfactory.  相似文献   
22.
Infrared spectroscopy studies of methyl 4-hydroxybenzoate (MHB) in 17 different organic solvents and in ethanol/CCl4 binary solvent were undertaken to investigate the solvent-solute interactions. The frequencies of carbonyl stretching vibration nu(C=O) of MHB in single solvents were correlated with the solvent acceptor number (AN) and the linear solvation energy relationships (LSER). The assignments of the two bands of nu(C=O) of MHB in alcohols and the single one of that in non-alcoholic solvents were discussed. The shifts of nu(C=O) of MHB in ethanol/CCl4 binary solvents showed that several kinds of solute-solvent hydrogen bonding interactions coexisted in the mixture solvents, with a change in the mole fraction of ethanol in the binary solvents.  相似文献   
23.
The flow-injection system combines on-line ion-exchange preconcentration with atomic absorption spectrometry (a.a.s.) for the determination of traces (μg l?1) of heavy metals in water samples. Miniature columns packed with 60–100 mesh chelating resin (122) with a salicylic acid functional group are used for preconcentration. A multifunctional rotary sampling valve which incorporated two parallel sampling columns allows sampling, exchange, elution and a.a.s. to be achieved sequentially. The increases in sensitivity for nickel, copper, lead and cadmium were 20–28-fold at a sampling rate of 40 h?1 with 5-ml samples. Relative standard deviations were 1.5–4.1%. The recoveries of these four metals added to tap, sea and polluted waters were generally satisfactory, except for cadmium in polluted water. The effects of column diameter and elution flow rates on sensitivity are discussed. Possible interferences are described.  相似文献   
24.
The graft copolymers of chitosan with polycaprolactone (PCL) were prepared through a protection-graft-deprotection route using phthaloylchitosan as intermediate. PCL macromonomers terminated with isocyanate groups reacted with hydroxyl groups of phthaloyl-protected chitosan regioselectively, and then phthaloyl groups were deprotected to give the free amino groups. The graft reaction was carried out in homogeneous system and yielded copolymers with high grafting content due to solubilization. FTIR, NMR and XRD were detected to characterize the resultant chitosan-graft-PCL copolymers.  相似文献   
25.
The electrochemical carbon dioxide reduction reaction (CO2RR) offers a promising solution to mitigate carbon emission and at the same time generate valuable carbonaceous chemicals/fuels. Single atom catalysts (SACs) are encouraging to catalyze the electrochemical CO2RR due to the tunable electronic structure of the central metal atoms, which can regulate the adsorption energy of reactants and reaction intermediates. Moreover, SACs form a bridge between homogeneous and heterogeneous catalysts, providing an ideal platform to explore the reaction mechanism of electrochemical reactions. In this review, we first discuss the strategies for promoting the CO2RR performance, including suppression of the hydrogen evolution reaction (HER), generation of C1 products and formation of C2+ products. Then, we summarize the recent developments in regulating the structure of SACs toward the CO2RR based on the above aspects. Finally, several issues regarding the development of SACs for the CO2RR are raised and possible solutions are provided.

The electrochemical carbon dioxide reduction reaction (CO2RR) offers a promising solution to mitigate carbon emission and at the same time generate valuable carbonaceous chemicals/fuels.  相似文献   
26.
A fluorescent amino acid derivative (Fmoc-DBO) has been synthesized, which contains 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as a small, hydrophilic fluorophore with an extremely long fluorescence lifetime (325 ns in H2O and 505 ns in D2O under air). Polypeptides containing both the DBO residue and an efficient fluorescence quencher allow the measurement of rate constants for intramolecular end-to-end contact formation. Bimolecular quenching experiments indicated that Trp, Cys, Met, and Tyr are efficient quenchers of DBO (k(q) = 20, 5.1, 4.5, and 3.6 x 10(8) M(-1) x s(-1) in D2O), while the other amino acids are inefficient. The quenching by Trp, which was selected as an intrinsic quencher, is presumed to involve exciplex-induced deactivation. Flexible, structureless polypeptides, Trp-(Gly-Ser)n-DBO-NH2, were prepared by standard solid-phase synthesis, and the rates of contact formation were measured through the intramolecular fluorescence quenching of DBO by Trp with time-correlated single-photon counting, laser flash photolysis, and steady-state fluorometry. Rate constants of 4.1, 6.8, 4.9, 3.1, 2.0, and 1.1 x 10(7) s(-1) for n = 0, 1, 2, 4, 6, and 10 were obtained. Noteworthy was the relatively slow quenching for the shortest peptide (n = 0). The kinetic data are in agreement with recent transient absorption studies of triplet probes for related peptides, but the rate constants are significantly larger. In contrast to the flexible structureless Gly-Ser polypeptides, the polyproline Trp-Pro4-DBO-NH2 showed insignificant fluorescence quenching, suggesting that a high polypeptide flexibility and the possibility of probe-quencher contact is essential to induce quenching. Advantages of the new fluorescence-based method for measuring contact formation rates in biopolymers include high accuracy, fast time range (100 ps-1 micros), and the possibility to perform measurements in water under air.  相似文献   
27.
Abstract— The primary and secondary electron transfer reactions which occurred upon laser flash photolysis of electrically neutral and positively-charged lipid bilayer vesicles containing chlorophyll, benzoquinone and cytochrome c were determined by time-resolved difference spectral and kinetic measurements, and compared with previous results obtained with negatively-charged vesicles (Y. Fang and G. Tollin, Photochem. Photobiol. 1988). The extent to which oxidized cytochrome c could function as an electron acceptor from triplet state chlorophyll, and reduced cytochrome c could act as an electron donor to chlorophyll cation radical, decreased from negatively-charged to electrically neutral to positively-charged vesicles, in agreement with expectations based on changes in the ability of cytochrome c to bind to the bilayer. In all three types of vesicles, cytochrome c reduction by benzoquinone anion radical occurred in the aqueous phase.  相似文献   
28.
Molecular photoswitches are considered to be important candidates in the field of solar energy storage due to their sensitive and reversible bidirectional optical response. Nevertheless, it is still a daunting challenge to design a molecular photoswitch to improve the low solar spectrum utilization and quantum yields while achieving charging and discharging of heat without solvent assistance. Herein, a series of visible-light-driven ethylene-bridged azobenzene (b-Azo) chromophores with different alkyne substituents which can undergo isomerization reactions promoted in both directions by visible light are reported. Their visible light responsiveness improves their solar spectrum utilization while also having high quantum yields. In addition, as the compounds are liquids, there is no need to dissolve the compounds in order to exploit this switching. The photoisomerization of b-Azo can be adjusted by alkyne-related substituents, and hexyne-substituted b-Azo is able to store and release photothermal energy with a high density of 106.1 J·g−1, and can achieve a temperature increase of 1.8 °C at a low temperature of −1 °C.  相似文献   
29.
With the rapid development of wireless sensor technology, recent progress in wireless sensor and actuator networks (WSANs) with energy harvesting provide the possibility for various real-time applications. Meanwhile, extensive research activities are carried out in the fields of efficient energy allocation and control strategy design. However, the joint design considering physical plant control, energy harvesting, and consumption is rarely concerned in existing works. In this paper, in order to enhance system control stability and promote quality of service for the WSAN energy efficiency, a novel three-step joint optimization algorithm is proposed through control strategy and energy management analysis. First, the optimal sampling interval can be obtained based on energy harvesting, consumption, and remaining conditions. Then, the control gain for each sampling interval is derived by using a backward iteration. Finally, the optimal control strategy is determined as a linear function of the current plant states and previous control strategies. The application of UAV formation flight system demonstrates that better system performance and control stability can be achieved by the proposed joint optimization design for all poor, sufficient, and general energy harvesting scenarios.  相似文献   
30.
Heterometallic cluster-based framework materials are of interest in terms of both their porous structures and multi-metallic reactivity. However, such materials have not yet been extensively investigated because of difficulties in their synthesis and structural characterization. Herein, we reported the designable synthesis of atomically precise heterometallic cluster-based framework compounds and their application as catalysts in aldol reactions. By using the synergistic coordination protocol, we successfully isolated a broad range of compounds with the general formula, [Al4M4O4(L)12(DABCO)2] (L = carboxylates; DABCO = 1,4-diazabicyclo[2.2.2]-octane; M2+ = Co2+, Mn2+, Zn2+, Fe2+, Cd2+). The basic heterometallic building blocks contain unprecedented main-group γ-alumina moieties and surrounding unsaturated transition metal centers. Interestingly, the porosity and interpenetration of these frameworks can be rationally regulated through the unprecedented strategy of increment of the metal radius in addition to general introduction of sterically bulky groups on the ligand. Furthermore, these porous materials are effective catalysts for aldol reactions. This work provides a catalytic molecular model platform with accurate molecular bonding between the supporters and catalytically active metal ions.

Mesoporous heterometallic architectures are designed by the incorporation of the Al4O4 cubane and interpenetration regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号