首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7728篇
  免费   1539篇
  国内免费   943篇
化学   5457篇
晶体学   116篇
力学   445篇
综合类   92篇
数学   866篇
物理学   3234篇
  2024年   32篇
  2023年   240篇
  2022年   387篇
  2021年   376篇
  2020年   449篇
  2019年   419篇
  2018年   349篇
  2017年   323篇
  2016年   437篇
  2015年   447篇
  2014年   479篇
  2013年   653篇
  2012年   724篇
  2011年   704篇
  2010年   507篇
  2009年   463篇
  2008年   441篇
  2007年   393篇
  2006年   329篇
  2005年   300篇
  2004年   252篇
  2003年   205篇
  2002年   181篇
  2001年   154篇
  2000年   111篇
  1999年   137篇
  1998年   105篇
  1997年   90篇
  1996年   91篇
  1995年   75篇
  1994年   64篇
  1993年   44篇
  1992年   35篇
  1991年   46篇
  1990年   41篇
  1989年   26篇
  1988年   22篇
  1987年   18篇
  1986年   14篇
  1985年   13篇
  1984年   2篇
  1983年   3篇
  1982年   6篇
  1981年   7篇
  1980年   4篇
  1978年   2篇
  1964年   1篇
  1959年   1篇
  1957年   2篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
971.
Flexible batteries based on gel electrolytes with high safety are promising power solutions for wearable electronics but suffer from vulnerable electrode-electrolyte interfaces especially upon complex deformations, leading to irreversible capacity loss or even battery collapse. Here, a supramolecular sol-gel transition electrolyte (SGTE) that can dynamically accommodate deformations and repair electrode-electrolyte interfaces through its controllable rewetting at low temperatures is designed. Mediated by the micellization of polypropylene oxide blocks in Pluronic and host-guest interactions between α-cyclodextrin (α-CD) and polyethylene oxide blocks, the high ionic conductivity and compatibility with various salts of SGTE afford resettable electrode-electrolyte interfaces and thus constructions of a series of highly durable, flexible aqueous zinc batteries. The design of this novel gel electrolyte provides new insights for the development of flexible batteries.  相似文献   
972.
Highly-active and low-cost bifunctional electrocatalysts for oxygen reduction and evolution are essential in rechargeable metal-air batteries, and single atom catalysts with Fe−N−C are promising candidates. However, the activity still needs to be boosted, and the origination of spin-related oxygen catalytic performance is still uncertain. Herein, an effective strategy to regulate local spin state of Fe−N−C through manipulating crystal field and magnetic field is proposed. The spin state of atomic Fe can be regulated from low spin to intermediate spin and to high spin. The cavitation of dxz and dyz orbitals of high spin FeIII can optimize the O2 adsorption and promote the rate-determining step (*O2 to *OOH). Benefiting from these merits, the high spin Fe−N−C electrocatalyst displays the highest oxygen electrocatalytic activities. Furthermore, the high spin Fe−N−C-based rechargeable zinc-air battery displays a high power density of 170 mW cm−2 and good stability.  相似文献   
973.
以天然产物齐墩果酸为母体,设计合成齐墩果酸衍生物,采用计算机辅助药物设计,对C-3、C-28位结构改造,设计合成12个未见文献报道的靶向VEGFR受体抑制剂; 采用噻唑蓝(MTT)法,用人肝癌细胞(HepG2)和乳腺癌细胞(MCF-7)对其进行初步体外抗肿瘤活性筛选;其结构经1H-NMR、13C-NMR谱确证。活性测试得出化合物I7、II1与阳性对照药相比有较强抑制作用,其抗肿瘤活性高于母体OA,分子对接结果显示I7和II1 与 VEGFR 受体具有较好的结合能力,值得进一步研究。  相似文献   
974.
Despite conspicuous merits of Zn metal anodes, the commercialization is still handicapped by rampant dendrite formation and notorious side reaction. Manipulating the nucleation mode and deposition orientation of Zn is a key to rendering stabilized Zn anodes. Here, a dual electrolyte additive strategy is put forward via the direct cooperation of xylitol (XY) and graphene oxide (GO) species into typical zinc sulfate electrolyte. As verified by molecular dynamics simulations, the incorporated XY molecules could regulate the solvation structure of Zn2+, thus inhibiting hydrogen evolution and side reactions. The self-assembled GO layer is in favor of facilitating the desolvation process to accelerate reaction kinetics. Progressive nucleation and orientational deposition can be realized under the synergistic modulation, enabling a dense and uniform Zn deposition. Consequently, symmetric cell based on dual additives harvests a highly reversible cycling of 5600 h at 1.0 mA cm−2/1.0 mAh cm−2.  相似文献   
975.
Y chromosome Short Tandem Repeat (STR) haplotypes have been used in assisting forensic investigations primarily for identification and male lineage determination. The current SWGDAM interpretation guidelines for Y-STR typing provide helpful guidance on those purposes but do not address the issue of kinship analysis with Y-STR haplotypes. Because of the high mutation rate of Y-STRs, there are complex missing person cases in which inconsistent Y-STR haplotypes between true paternal lineage relatives will arise and cases with two or more male references in the same lineage and yet differ in their haplotypes. Therefore, more useful methods are needed for interpreting the Y-STR haplotype data. Computational methods and interpretation guidelines have been developed specifically addressing this issue, either using a mismatch-based counting method or a pedigree likelihood ratio method. In this study, a software program, MPKin-YSTR, was developed by implementing those more sophisticated methods. This software should be able to improve the interpretation of complex cases with Y-STR haplotype evidence. Thus, more biological evidence will be interpreted, which in turn will result in more investigation leads to help solve crimes.  相似文献   
976.
In this work, the preparative separation of quinolyridine alkaloids from seeds of T. lanceolata by conventional and pH-zone-refining counter-current chromatography. Traditional counter-current chromatography separation was performed by a flow-rate changing strategy with a solvent system of ethyl acetate-n-butanol-water (1:9:10, v/v) and 200 mg sample loading. Meanwhile, the pH-zone-refining mode was adopted for separating 2.0 g crude alkaloid extracts with the chloroform-methanol-water (4:3:3, v/v) solvent system using the stationary and mobile phases of 40 mM hydrochloric acid and 10 mM triethylamine. Finally, six compounds, including N-formylcytisine (two conformers) ( 1 ), N-acetycytisine (two conformers) ( 2 ), (-)-cytisine ( 3 ), 13-β-hydroxylthermopsine ( 4 ), N-methylcytisine ( 5 ), and thermopsine ( 6 ) were successfully obtained in the two counter-current chromatography modes with the purities over 96.5%. Moreover, we adopted nuclear magnetic resonance and mass spectrometry for structural characterization. Based on the obtained findings, the pH-zone-refining mode was the efficient method to separate quinolyridine alkaloids relative to the traditional mode.  相似文献   
977.
The achievement of significant photoluminescence (PL) in lanthanide ions (Ln3+) has primarily relied on host sensitization, where energy is transferred from the excited host material to the Ln3+ ions. However, this luminous mechanism involves only one optical antenna, namely the host material, which limits the accessibility of excitation wavelength-dependent (Ex-De) PL. Consequently, the wider application of Ln3+ ions in light-emitting devices is hindered. In this study, we present an organic–inorganic compound, (DMA)4LnCl7 (DMA+=[CH3NH2CH3]+, Ln3+=Ce3+, Tb3+), which serves as an independent host lattice material for efficient Ex-De emission by doping it with trivalent antimony (Sb3+). The pristine (DMA)4LnCl7 compounds exhibit high luminescence, maintaining the characteristic sharp emission bands of Ln3+ and demonstrating a high PL quantum yield of 90–100 %. Upon Sb3+ doping, the compound exhibits noticeable Ex-De emission with switchable colors. Through a detailed spectral study, we observe that the prominent energy transfer process observed in traditional host-sensitized systems is absent in these materials. Instead, they exhibit two independent emission centers from Ln3+ and Sb3+, each displaying distinct features in luminous color and radiative lifetime. These findings open up new possibilities for designing Ex-De emitters based on Ln3+ ions.  相似文献   
978.
Organic electrode materials (OEMs), valued for their sustainability and structural tunability, have been attracting increasing attention for wide application in sodium-ion batteries (SIBs) and other rechargeable batteries. However, most OEMs are plagued with insufficient specific capacity or poor cycling stability. Therefore, it′s imperative to enhance their specific capacity and cycling stability through molecular design. Herein, we designed and synthesized a heteroaromatic molecule 2,3,8,9,14,15-hexanol hexaazatrinaphthalene (HATN-6OH) by the synergetic coupling of catechol (the precursor of ortho-quinone)/ortho-quinone functional groups and HATN conjugated core structures. The abundance of catechol/ortho-quinone and imine redox-active moieties delivers a high specific capacity of nine-electron transfer for SIBs. Most notably, the π–π interactions and intermolecular hydrogen bond forces among HATN-6OH molecules secure the stable long-term cycling performance of SIBs. Consequently, the as-prepared HATN-6OH electrode exhibited a high specific capacity (554 mAh g−1 at 0.1 A g−1), excellent rate capability (202 mAh g−1 at 10 A g−1), and stable long-term cycling performance (73 % after 3000 cycles at 10 A g−1) in SIBs. Additionally, the nine-electron transfer mechanism is confirmed by systematic density functional theory (DFT) calculation, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and Raman analysis. The achievement of the synergetic coupling of the redox-active sites on OEMs could be an important key to the enhancement of SIBs and other metal-ion batteries.  相似文献   
979.
Studying the characteristics and molecular mechanisms of liquid self-diffusion coefficient and viscosity changes is of great significance for, e. g., chemical and petroleum processing. As examples of highly complex liquid,an asphaltene-free high-acid and high-viscosity crude oil and its extracted fractions were studied by comparing their 1H DOSY diffusion maps. The crude oil exhibited a polydisperse diffusion distribution, including multiple diffusion portions with diffusion coefficients much smaller than that of any single fraction in independent diffusion. The main mechanism that leads to the decreases in the diffusion coefficients of crude oil is attributed to diffusion resistance enhanced by Dynamical Molecular-Interaction Networks (DMINs), rather than by enlargement of the diffusion species caused by molecular aggregation. Constructed through the synergistic interactions of various polar molecules in crude oil, DMINs dynamically bind polar molecules, trap polarizable molecules, and spatially hinder the free motion of non-polar molecules. Overall, this reduces the mobility of all molecular species, as illustrated by the decreased diffusion coefficients. This study demonstrates that DOSY is a powerful NMR method to investigate molecular motion abilities also in complex mixtures. In addition, the insights in the influence of the interaction matrix on the molecular mobility also help to understand the contribution of “structural viscosity” to the viscosity of heavy oil.  相似文献   
980.
马雪璐  李蒙  雷鸣 《化学学报》2023,81(1):84-99
多核过渡金属配合物作为一类广泛应用的均相催化剂,其设计灵感往往来自天然酶的多金属活性位点所发挥的重要作用.目前,三核金属配合物作为活化小分子的多金属催化剂受到了广泛的关注.为深入理解三核过渡金属配合物在催化反应中作用特点,对近年报道的代表性三核过渡金属配合物按金属中心进行分类,并对配体环境形成特点及催化应用进行综述.从金属中心出发,讨论了三核过渡金属配合物的几何结构和电子特征;从配体环境出发,总结了关联三个独立的金属位点的配位环境特征;在催化应用方面,重点综述了三核过渡金属配合物在涉及特定化学键活化反应的催化作用机制,最后对三核过渡金属配合物的催化应用前景进行展望.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号