全文获取类型
收费全文 | 77765篇 |
免费 | 323篇 |
国内免费 | 374篇 |
专业分类
化学 | 23950篇 |
晶体学 | 787篇 |
力学 | 6720篇 |
数学 | 31948篇 |
物理学 | 15057篇 |
出版年
2018年 | 10431篇 |
2017年 | 10258篇 |
2016年 | 6056篇 |
2015年 | 839篇 |
2014年 | 281篇 |
2013年 | 296篇 |
2012年 | 3756篇 |
2011年 | 10475篇 |
2010年 | 5616篇 |
2009年 | 6029篇 |
2008年 | 6575篇 |
2007年 | 8735篇 |
2006年 | 202篇 |
2005年 | 1288篇 |
2004年 | 1515篇 |
2003年 | 1959篇 |
2002年 | 1006篇 |
2001年 | 246篇 |
2000年 | 289篇 |
1999年 | 150篇 |
1998年 | 192篇 |
1997年 | 145篇 |
1996年 | 197篇 |
1995年 | 120篇 |
1994年 | 75篇 |
1993年 | 94篇 |
1992年 | 57篇 |
1991年 | 65篇 |
1990年 | 51篇 |
1989年 | 60篇 |
1988年 | 59篇 |
1987年 | 57篇 |
1986年 | 59篇 |
1985年 | 46篇 |
1984年 | 43篇 |
1983年 | 37篇 |
1982年 | 41篇 |
1981年 | 38篇 |
1980年 | 47篇 |
1979年 | 44篇 |
1978年 | 36篇 |
1973年 | 26篇 |
1914年 | 45篇 |
1913年 | 41篇 |
1912年 | 40篇 |
1910年 | 24篇 |
1909年 | 41篇 |
1908年 | 40篇 |
1907年 | 32篇 |
1904年 | 28篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Han Wang Tingting Jin Xing Zheng Bo Jiang Chaosheng Zhu Xiangdong Yuan Jingtang Zheng Mingbo Wu 《Journal of nanoparticle research》2016,18(11):339
Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer–Emmett–Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher –OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV–vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less –OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres. 相似文献
992.
993.
Chenhao Zhao Shuzhen Fang Zhibiao Hu Sheng’en Qiu Kaiyu Liu 《Journal of nanoparticle research》2016,18(7):201
The carbon substrate with unique 3D macroporous structure has been prepared through the immediate carbonization of ethylenediaminetetraacetic acid (EDTA) and KOH mixture. The porous carbon composed of micro- and small mesoporous (2–5 nm) structure has a BET specific surface area of 1824.8 m2 g?1. The amorphous and nanosized Se is uniformly encapsulated into the porous structure of porous carbon using melting diffusion route, and the weight content of Se in target Se/C composite can be as high as ~50 %. As an Li–Se battery cathode, the Se/C composite delivers a reversible (2nd) discharge capacity of 597.4 mAh g?1 at 0.24C and retains a discharge capacity of 538.4 mAh g?1 at 0.24C after 100 cycles. Furthermore, the composite also has a stable capacity of 291.0 mAh g?1 at a high current of 4.8C. The high specific area and good porous size of EDTA-derived carbon substrate may a be responsibility for the excellent electrochemical performances of Se/C composite. 相似文献
994.
995.
996.
Both fluorescent and magnetic nanoprobes have great potential applications for diagnostics and therapy. In the present work, a folic acid-conjugated and silica-modified GdPO4:Tb3+ (GdPO4:Tb3+@SiO2-FA) dual nanoprobe was strategically designed and synthesized for the targeted dual-modality optical and magnetic resonance (MR) imaging via a facile aqueous method. Their structural, optical, and magnetic properties were determined using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), ultraviolet-visible spectra (UV-Vis), photoluminescence (PL), and superconducting quantum interference device (SQUID). These results indicated that GdPO4:Tb3+@SiO2-FA were uniform monodisperse core-shell structured nanorods (NRs) with an average length of ~200 nm and an average width of ~25 nm. The paramagnetic property of the synthesized GdPO4:Tb3+@SiO2-FA NRs was confirmed with its linear hysteresis plot (M-H). In addition, the NRs displayed an obvious T1-weighted effect and thus it could potentially serve as a T1-positive contrast agent. The NRs emitted green lights due to the 5D4 → 7F5 transition of the Tb3+. The in vitro assays with NCI-H460 lung cancer cells and human embryonic kidney cell line 293T cells indicated that the GdPO4:Tb3+@SiO2-FA nanoprobe could specifically bind the cells bearing folate receptors (FR). The MTT assay of the NRs revealed that its cytotoxicity was very low. Further in vivo MRI experiments distinctively depict enhanced anatomical features in a xenograft tumor. These results suggest that the GdPO4:Tb3+@SiO2-FA NPs have excellent imaging and cell-targeting abilities for the folate receptor-targeted dual-modality optical and MR imaging and can be potentially used as the nanoprobe for bioimaging. 相似文献
997.
Sundararajan Parani Giridharan Bupesh Elayaperumal Manikandan Kannaiyan Pandian Oluwatobi Samuel Oluwafemi 《Journal of nanoparticle research》2016,18(11):347
Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV–Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ~3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications. 相似文献
998.
In this work, the Stöber process was applied to produce uniform silica nanoparticles (SNPs) in the meso-scale size range. The novel aspect of this work was to control the produced silica particle size by only varying the volume of the solvent ethanol used, whilst fixing the other reaction conditions. Using this one-step Stöber-based solvent varying (SV) method, seven batches of SNPs with target diameters ranging from 70 to 400 nm were repeatedly reproduced, and the size distribution in terms of the polydispersity index (PDI) was well maintained (within 0.1). An exponential equation was used to fit the relationship between the particle diameter and ethanol volume. This equation allows the prediction of the amount of ethanol required in order to produce particles of any target diameter within this size range. In addition, it was found that the reaction was completed in approximately 2 h for all batches regardless of the volume of ethanol. Structurally coloured artificial opal photonic crystals (PCs) were fabricated from the prepared SNPs by self-assembly under gravity sedimentation. 相似文献
999.
Quantum teleportation is important for quantum communication. We propose a protocol that uses a partially entangled Greenberger–Horne–Zeilinger (GHZ) state for single hop teleportation. Quantum teleportation will succeed if the sender makes a Bell state measurement, and the receiver performs the Hadamard gate operation, applies appropriate Pauli operators, introduces an auxiliary particle, and applies the corresponding unitary matrix to recover the transmitted state.We also present a protocol to realize multiple teleportation of partially entangled GHZ state without an auxiliary particle. We show that the success probability of the teleportation is always 0 when the number of teleportations is odd. In order to improve the success probability of a multihop, we introduce the method used in our single hop teleportation, thus proposing a multiple teleportation protocol using auxiliary particles and a unitary matrix. The final success probability is shown to be improved significantly for the method without auxiliary particles for both an odd or even number of teleportations. 相似文献
1000.
For the exploration of gas hydrate resources by measuring the dissolved methane concentration in seawater, a continuous-wave cavity ringdown spectroscopy (CW-CRDS) experimental setup was constructed for trace methane detection. A current-modulation method, rather than a cavity-modulation method using an optical switch and a piezoelectric transducer, was employed to realize the cavity excitation and shutoff. Such a current-modulation method enabled the improvement of the experimental setup construction and stability, and the system size and stability are critical for a sensor to be deployed underwater. Ringdown data acquisition and processing were performed, followed by an evaluation of the experimental setup stability and sensitivity. The obtained results demonstrate that great errors are introduced when a large fitting window is selected if the analog-to-digital converter has an insufficient resolution. The ringdown spectrum of methane corresponding to the 2v 3 band R(4) branch was captured, and the methane concentration in lab air was determined to be 2.06 ppm. Further experiments for evaluating the quantitative ability of this CW-CRDS experimental setup are underway from which a high-sensitivity methane sensor that can be combined with a degassing system is expected. 相似文献