首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92389篇
  免费   888篇
  国内免费   418篇
化学   34118篇
晶体学   1025篇
力学   7135篇
综合类   1篇
数学   33022篇
物理学   18394篇
  2024年   65篇
  2023年   184篇
  2022年   460篇
  2021年   439篇
  2020年   505篇
  2019年   553篇
  2018年   10766篇
  2017年   10561篇
  2016年   6697篇
  2015年   1321篇
  2014年   1066篇
  2013年   1600篇
  2012年   4849篇
  2011年   11559篇
  2010年   6338篇
  2009年   6599篇
  2008年   7283篇
  2007年   9424篇
  2006年   793篇
  2005年   1807篇
  2004年   1898篇
  2003年   2277篇
  2002年   1266篇
  2001年   407篇
  2000年   428篇
  1999年   254篇
  1998年   268篇
  1997年   247篇
  1996年   296篇
  1995年   194篇
  1994年   155篇
  1993年   194篇
  1992年   151篇
  1991年   146篇
  1990年   119篇
  1989年   133篇
  1988年   111篇
  1987年   107篇
  1986年   105篇
  1985年   109篇
  1984年   107篇
  1983年   95篇
  1982年   90篇
  1981年   81篇
  1980年   97篇
  1979年   107篇
  1978年   88篇
  1977年   77篇
  1976年   62篇
  1975年   54篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
A. C. Jain  R. Khazanchi  A. Kumar 《Tetrahedron》1978,34(24):3569-3573
Acacetin (4) on reaction with prenyl bromide in the presence of methanolic sodium methoxide yielded 6,8-di-C-prenyl-(5) and 6-C-prenyl-(10) derivatives. The former (5) formed the corresponding bisdihydropyrano derivative (8). Monomethyl derivative of 10 (12) gave monodihydropyrano derivative (13). DDQ reaction of 10 followed by methylation afforded di-O-methyl carpachromene (2); whereas that of 5 gave a mixture of 21 and 22.

Nuclear prenylation of apigenin (3) in a similar way gave 6,8-di-C-C-prenyl-(16), its 7-0-prenyl-(15) and 6-C-prenyl-(18) derivatives. DDQ reaction of 18 provided natural carpachromene.1 The structure of the isopentylated apigenin isolated by Dreyer et al.2 needs further consideration.  相似文献   

92.
(2S)- and (2R)-2-Amino-4-bromobutanoic acid were prepared starting from N-Boc-glutamic acid α tert-butyl ester. The double tert-butyl protection was necessary to prevent a partial racemisation during Barton’s radical decarboxylation used to transform the γ-carboxylic group into a bromide. This bromide reacted with different nitrogen, oxygen and sulphur nucleophiles to give nonnatural amino acids characterised by basic or heterocyclic side chains. The title compound was also used to prepare a conformationally constrained peptidomimetic.  相似文献   
93.
In this paper, by capturing the atomic information and reflecting the behaviour governed by the nonlinear potential function, an analytical molecular mechanics approach is proposed. A constitutive relation for single-walled carbon nanotubes (SWCNT’s) is established to describe the nonlinear stress-strain curve of SWCNT’s and to predict both the elastic properties and breaking strain of SWCNT’s during tensile deformation. An analysis based on the virtual internal bond (VIB) model proposed by P. Zhang et al. is also presented for comparison. The results indicate that the proposed molecular mechanics approach is indeed an acceptable analytical method for analyzing the mechanical behavior of SWCNT’s. The project supported by the National Natural Science Foundation of China (10121202, 90305015 and 10328203), the Key Grant Project of Chinese Ministry of Education (0306) and the Research Grants Council of the Hong Kong Special Administrative Region, China (HKU 7195/04E).  相似文献   
94.
The geometrical effect of chlorine atom positions in polyatomic molecules after capturing a low-energy electron is shown to be a prevalent mechanism yielding Cl2. In this work, we investigated hexachlorobenzene reduction in electron transfer experiments to determine the role of chlorine atom positions around the aromatic ring, and compared our results with those using ortho-, meta- and para-dichlorobenzene molecules. This was achieved by combining gas-phase experiments to determine the reaction threshold by means of mass spectrometry together with quantum chemical calculations. We also observed that Cl2 formation can only occur in 1,2-C6H4Cl2, where the two closest C–Cl bonds are cleaved while the chlorine atoms are brought together within the ring framework due to excess energy dissipation. These results show that a strong coupling between electronic and C–Cl bending motion is responsible for a positional isomeric effect, where molecular recognition is a determining factor in chlorine anion formation.  相似文献   
95.
The genus Cetraria s. str. (Parmeliaceae family, Cetrarioid clade) consists of 15 species of mostly erect brown or greenish yellow fruticose or subfoliose thallus. These Cetraria species have a cosmopolitan distribution, being primarily located in the Northern Hemisphere, in North America and in the Eurasia area. Phytochemical analysis has demonstrated the presence of dibenzofuran derivatives (usnic acid), depsidones (fumarprotocetraric and protocetraric acids) and fatty acids (lichesterinic and protolichesterinic acids). The species of Cetraria, and more particularly Cetraria islandica, has been widely employed in folk medicine for the treatment of digestive and respiratory diseases as decoctions, tinctures, aqueous extract, and infusions. Moreover, Cetraria islandica has had an important nutritional and cosmetic value. These traditional uses have been validated in in vitro and in vivo pharmacological studies. Additionally, new therapeutic activities are being investigated, such as antioxidant, immunomodulatory, cytotoxic, genotoxic and antigenotoxic. Among all Cetraria species, the most investigated by far has been Cetraria islandica, followed by Cetraria pinastri and Cetraria aculeata. The aim of the current review is to update all the knowledge about the genus Cetraria covering aspects that include taxonomy and phylogeny, morphology and distribution, ecological and environmental interest, phytochemistry, traditional uses and pharmacological properties.  相似文献   
96.
The increase in the utilization of Lavandula essential oil in industries led to an impressive rise in the demand for quality essential oils. However, a post-harvest drying of Lavandula species can be a decisive factor to determine the quantity and quality of essential oil. The study was conducted in western Himalayan conditions to assess the essential oil content and composition of two Lavandula species viz., lavender (Lavandula angustifolia Mill.), and lavandin (Lavandula × intermedia Emeric ex Loisel), at four different drying duration (0 h, 24 h, 48 h and 72 h after the harvest). The higher growth attributes viz., plant height (71.7 cm), ear length (8.8 cm), number of spikes (18.1), and number of flowers per ear (47.5) were higher in lavandin, while the number of branches (17.1) was higher in lavender. Essential oil content (%) and moisture reduction (%) were significantly higher at 72 h than at 0 h. The major components of lavender and lavandin essential oil were linalool (33.6–40.5%), linalyl acetate (10.8–13.6%), lavandulyl acetate (2.8–14.5%), and linalyl propionate (5.3–14.1%) in both the Lavandula species. There was a decreasing trend in linalool and an increasing trend in linalyl acetate content in lavandin, with an increase in drying duration up to 72 h; while in lavender, no regular trend was observed in linalool and linalyl acetate content. It was observed that linalool and linalyl acetate levels were the highest at 24 and 0 h of drying in lavender and lavandin, respectively, and essential oil extraction can be done according to the desire of the constituent at varied drying duration.  相似文献   
97.
Plant gums are bio-organic substances that are derived from the barks of trees. They are biodegradable and non-adverse complex polysaccharides that have been gaining usage in recent years due to a number of advantages they contribute to various applications. In this study, gum was collected from Moringa oleifera and Azadirachta indica trees, then dried and powdered. Characterizations of gum polysaccharides were performed using TLC, GC-MS, NMR, etc., and sugar molecules such as glucose and xylose were found to be present. Effects of the gums on Abelmoschus esculentus growth were observed through root growth, shoot growth, and biomass content. The exposure of the seeds to the plant gums led to bio stimulation in the growth of the plants. Poor quality soil was exposed to the gum polysaccharide, where the polysaccharide was found to improve soil quality, which was observed through soil analysis and SEM analysis of soil porosity and structure. Furthermore, the plant gums were also found to have bio-pesticidal activity against mealybugs, which showed certain interstitial damage evident through histopathological analysis.  相似文献   
98.
Background: Himalayan Viola species (Banksha) are traditionally important herbs with versatile therapeutic benefits such as antitussive, analgesic, antipyretic, antimalarial, anti-inflammatory, and anticancerous ones. The current investigation was focused on exploring polyphenolic profiles, antioxidant, and antimicrobial potentials of wild viola species at 15 gradient locations (375–1829 m). Methods: Morphological, physiochemical, and proximate analyses were carried out as per WHO guidelines for plant drug standardization. Total polyphenolic and flavonoid content were carried out using gallic acid and rutin equivalent. UPLC-DAD was used to profile the targeted polyphenols (gallic acid, vanillic acid, syringic acid, p-coumaric acid, ferulic acid, rutin, quercetin, luteolin, caffeic acid, and epicatechin). Similarly, all samples were screened for antioxidant and antimicrobial activity. Statistical analysis was used to correlate polyphenolic and targeted activities to assess Viola species adaptation behavior patterns. Results: Viola canescens (V. canescens) and Viola pilosa (V. pilosa) were found abundantly at their respective sites. Among flowers and leaves, flowers of V. canescens and V. pilosa showed higher total polyphenolic and flavonoid content (51.4 ± 1.13 mg GAE/g and 65.05 ± 0.85 mg RE/g, and 33.26 ± 0.62 mg GAE/g and 36.10 ± 1.41 mg RE/g, respectively). Furthermore, UPLC-DAD showed the uppermost content of p-coumaric acid in flowers and ferulic acid in leaves, while rutin was significant in both the tissues. Conclusions: The adaptive behavior of Viola species showed variability in morphological characters with the altitudes, while targeted polyphenols and activities were significant at mid-altitudes. This research helps in the selection of right chemotype for agrotechnological interventions and the development of nutraceutical products.  相似文献   
99.
Light hydrocarbon separation is considered one of the most industrially challenging and desired chemical separation processes and is highly essential in polymer and chemical industries. Among them, separating ethylene (C2H4) from C2 hydrocarbon mixtures such as ethane (C2H6), acetylene (C2H2), and other natural gas elements (CO2, CH4) is of paramount importance and poses significant difficulty. We demonstrate such separations using an Al-MOF synthesised earlier as a non-porous material, but herein endowed with hierarchical porosity created under microwave conditions in an equimolar water/ethanol solution. The material possessing a large surface area (793 m2 g−1) exhibits an excellent uptake capacity for major industrial hydrocarbons in the order of C2H2 > C2H6 > CO2 > C2H4 > CH4 under ambient conditions. It shows an outstanding dynamic breakthrough separation of ethylene (C2H4) not only for a binary mixture (C2H6/C2H4) but also for a quaternary combination (C2H4/C2H6/C2H2/CO2 and C2H4/C2H6/C2H2/CH4) of varying concentrations. The detailed separation/purification mechanism was unveiled by gas adsorption isotherms, mixed-gas adsorption calculations, selectivity estimations, advanced computer simulations such as density functional theory (DFT), grand canonical Monte Carlo (GCMC) and ab initio molecular dynamics (AIMD), and stepwise multicomponent dynamic breakthrough experiments.

Industrially important C2H4 purification from multi-component hydrocarbon mixtures.  相似文献   
100.
Industrial-based application of supercritical CO2 (SCCO2) has emerged as a promising technology in numerous scientific fields due to offering brilliant advantages, such as simplicity of application, eco-friendliness, and high performance. Loxoprofen sodium (chemical formula C15H18O3) is known as an efficient nonsteroidal anti-inflammatory drug (NSAID), which has been long propounded as an effective alleviator for various painful disorders like musculoskeletal conditions. Although experimental research plays an important role in obtaining drug solubility in SCCO2, the emergence of operational disadvantages such as high cost and long-time process duration has motivated the researchers to develop mathematical models based on artificial intelligence (AI) to predict this important parameter. Three distinct models have been used on the data in this work, all of which were based on decision trees: K-nearest neighbors (KNN), NU support vector machine (NU-SVR), and Gaussian process regression (GPR). The data set has two input characteristics, P (pressure) and T (temperature), and a single output, Y = solubility. After implementing and fine-tuning to the hyperparameters of these ensemble models, their performance has been evaluated using a variety of measures. The R-squared scores of all three models are greater than 0.9, however, the RMSE error rates are 1.879 × 10−4, 7.814 × 10−5, and 1.664 × 10−4 for the KNN, NU-SVR, and GPR models, respectively. MAE metrics of 1.116 × 10−4, 6.197 × 10−5, and 8.777 × 10−5errors were also discovered for the KNN, NU-SVR, and GPR models, respectively. A study was also carried out to determine the best quantity of solubility, which can be referred to as the (x1 = 40.0, x2 = 338.0, Y = 1.27 × 10−3) vector.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号