首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   19篇
  国内免费   1篇
化学   312篇
晶体学   5篇
力学   8篇
数学   17篇
物理学   65篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   11篇
  2020年   4篇
  2019年   11篇
  2018年   12篇
  2017年   10篇
  2016年   16篇
  2015年   10篇
  2014年   14篇
  2013年   38篇
  2012年   27篇
  2011年   33篇
  2010年   19篇
  2009年   10篇
  2008年   19篇
  2007年   22篇
  2006年   23篇
  2005年   15篇
  2004年   15篇
  2003年   22篇
  2002年   16篇
  2001年   3篇
  1997年   2篇
  1996年   3篇
  1995年   7篇
  1994年   9篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有407条查询结果,搜索用时 15 毫秒
61.
The structural characterization of a new oligosaccharide antibiotic, Everninomicin-6 (EV-6), is described. Detailed fast-atom bombardment mass spectrometry (FAB-MS) studies along with NMR and chemical degradation methods were conducted to elucidate the structure of EV-6. The effects of the use of various matrices, including salt addition, on the quality of the FAB-MS were explored. The use of 3-nitro benzyl alcohol, dimethyl sulfoxide (DMSO), and NaCl produced the best results: an intense sodiated molecular ion plus structurely informative fragmentation. FAB-MS yields information providing the complete sugar sequence information for everninomicins, which is quite valuable to the elucidation of the structure of this complex oligosaccharide antibiotic. In addition, the results of accurate mass work with the molecular ion are consistent with the assigned structure. The use of electrospray ionization mass spectrometry (ESI-MS) and ESI-MS/MS for the study of EV-6 was investigated and was found to produce an abundant molecular ion with limited structural information. These results revealed that EV-6 resembled EV-D quite closely except for the absence of the nitrosugar and the replacement on ring g of the -CH2OCH3 group with a -CH2OH group.  相似文献   
62.
A novel chitosan-formaldehyde porous derivative (scaffolds) was prepared by reaction of 85% deacetylated chitosan with 37% aq. formaldehyde using supercritical carbon dioxide (sc. CO2). Prior to reaction, the chitosan hydrogel was prepared in 1% aq. acetic acid (AcOH) and formaldehyde. The prepared hydrogel was subjected to solvent exchange. The identity of the Schiff base was confirmed by Fourier transform infrared spectroscopy (FTIR). The chitosan-derivative was evaluated by thermal analysis, scanning electron microscopy, and porosimetry analysis. Overall, the sc. CO2 assisted chitosan derivative opens new perspectives as biomedical material.  相似文献   
63.
It is well known that when nanoparticles (NPs) are exposed to biological fluid, it results into formation of nanoparticle protein corona, which has been the subject of extensive studies for the development of targeted drug delivery. In this work, we demonstrated the dynamic light scattering, fluorescence, and UV-visible spectroscopy as quantitative and qualitative tools to monitor adsorption of BSA protein onto silver nanoparticles (AgNPs). The adsorption resulted in significant gradual increase in average hydrodynamic radius of BSA-AgNP corona from 24 to 35 nm and its attainment of equilibrium point (saturation) that correlated with albumin concentration enables condition for bound and unbound protein adsorption to be interpreted. Using DLS, the dissociation constant (KD) was obtained for soft corona to be 2.09?±?0.30 μM. The UV-visible and fluorescence spectroscopy results were correlated with DLS. Loss of percent helicity in secondary structure of adsorbed BSA was monitored in both coronas as compared to native protein. Both coronas were found to be biocompatible with RBC membrane. Further, the results of adsorption isotherm model were used to validate the multilayer formation of albumin protein on silver nanoparticles. The obtained results would be relevant in the drug design development for tumor-targeted therapy.
Graphical abstract ?
  相似文献   
64.
Large-Eddy Simulation (LES) has become a potent tool to investigate instabilities in swirl flows even for complex, industrial geometries. However, the accurate prediction of pressure losses on these complex flows remains difficult. The paper identifies localised near-wall resolution issues as an important factor to improve accuracy and proposes a solution with an adaptive mesh h-refinement strategy relying on the tetrahedral fully automatic MMG3D library of Dapogny et al. (J. Comput. Phys. 262, 358-378, 2014) using a novel sensor based on the dissipation of kinetic energy. Using a joint experimental and numerical LES study, the methodology is first validated on a simple diaphragm flow before to be applied on a swirler with two counter-rotating passages. The results demonstrate that the new sensor and adaptation approach can effectively produce the desired local mesh refinement to match the target losses, measured experimentally. Results shows that the accuracy of pressure losses prediction is mainly controlled by the mesh quality and density in the swirler passages. The refinement also improves the computed velocity and turbulence profiles at the swirler outlet, compared to PIV results. The significant improvement of results confirms that the sensor is able to identify the relevant physics of turbulent flows that is essential for the overall accuracy of LES. Finally, in the appendix, an additional comparison of the sensor fields on tetrahedral and hexahedral meshes demonstrates that the methodology is broadly applicable to all mesh types.  相似文献   
65.
A series of mononuclear lanthanide(III) complexes [Ln(LH(2))(H(2)O)(3)Cl](ClO(4))(2) (Ln = La, Nd, Sm, Eu, Gd, Tb, Lu) of the tetraiminodiphenolate macrocyclic ligand (LH(2)) in 95 : 5 (v/v) methanol-water solution fix atmospheric carbon dioxide to produce the carbonato-bridged trinuclear complexes [{Ln(LH(2))(H(2)O)Cl}(3)(μ(3)-CO(3))](ClO(4))(4)·nH(2)O. Under similar conditions, the mononuclear Y(III) complex forms the dimeric compound [{Y(LH(2))(H(2)O)Cl}(μ(2)-CO(3)){Y(LH(2))(H(2)O)(2)}](ClO(4))(3)·4H(2)O. These complexes have been characterized by their IR and NMR ((1)H, (13)C) spectra. The X-ray crystal structures have been determined for the trinuclear carbonato-bridged compounds of Nd(III), Gd(III) and Tb(III) and the dinuclear compound of Y(III). In all cases, each of the metal centers are 8-coordinate involving two imine nitrogens and two phenolate oxygens of the macrocyclic ligand (LH(2)) whose two other imines are protonated and intramolecularly hydrogen-bonded with the phenolate oxygens. The oxygen atoms of the carbonate anion in the trinuclear complexes are bonded to the metal ions in tris-bidentate μ(3)-η(2):η(2):η(2) fashion, while they are in bis-bidentate μ(2)-η(2):η(2) mode in the Y(III) complex. The magnetic properties of the Gd(III) complex have been studied over the temperature range 2 to 300 K and the magnetic susceptibility data indicate a very weak antiferromagnetic exchange interaction (J = -0.042 cm(-1)) between the Gd(III) centers (S = 7/2) in the metal triangle through the carbonate bridge. The luminescence spectral behaviors of the complexes of Sm(III), Eu(III), and Tb(III) have been studied. The ligand LH(2) acts as a sensitizer for the metal ions in an acetonitrile-toluene glassy matrix (at 77 K) and luminescence intensities of the complexes decrease in the order Eu(3+) > Sm(3+) > Tb(3+).  相似文献   
66.
Recent advancement on the redox properties of a selection of transition metal complexes of the azoaromatic ligands: bidentate L(1) [2-(arylazo)pyridine] and tridentate HL(2) [2-(aminoarylphenylazo)pyridine] are described and compared. Due to the presence of a low lying azo-centered π*-orbital, these azoaromatic ligands may exist in multiple valent states. The coordination chemistry of the L(1) ligands was thoroughly studied during the 1980s. These complexes undergo facile reduction in solution at low accessible potentials. One electron reduced azo-complexes, though known for a long time to occur in solution, have only recently been isolated in a crystalline state. New synthetic protocols for the synthesis of metal-bound azo-radical complexes have been developed. Low-valent metal complexes such as metal carbonyls have been found to be excellent starting materials for this purpose. In a few selected cases, syntheses of these complexes were also achieved from very high valent metal oxides using triphenylphosphine as both a reducing and oxo-abstracting agent. Issues related to the ambiguities of the electronic structures in the azo-metal complexes have been discussed considering bond parameters, redox and spectral properties. Unusual redox events such as RIET (Redox-Induced Electron Transfer) phenomena in a few systems have been elaborated and compared with the known example. Novel examples of N=N bond cleavage reactions via four-electron reduction and subsequent C-N bond formation in metal-bound coordinated ligands have been noted.  相似文献   
67.
Three iron(II) complexes, [Fe(TPMA)(BIM)](ClO4)2?0.5H2O ( 1 ), [Fe(TPMA)(XBIM)](ClO4)2 ( 2 ), and [Fe(TPMA)(XBBIM)](ClO4)2 ?0.75CH3OH ( 3 ), were prepared by reactions of FeII perchlorate and the corresponding ligands (TPMA=tris(2‐pyridylmethyl)amine, BIM=2,2′‐biimidazole, XBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐biimidazole, XBBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐bibenzimidazole). The compounds were investigated by a combination of X‐ray crystallography, magnetic and photomagnetic measurements, and Mössbauer and optical absorption spectroscopy. Complex 1 exhibits a gradual spin crossover (SCO) with T1/2=190 K, whereas 2 exhibits an abrupt SCO with approximately 7 K thermal hysteresis (T1/2=196 K on cooling and 203 K on heating). Complex 3 is in the high‐spin state in the 2–300 K range. The difference in the magnetic behavior was traced to differences between the inter‐ and intramolecular interactions in 1 and 2 . The crystal packing of 2 features a hierarchy of intermolecular interactions that result in increased cooperativity and abruptness of the spin transition. In 3 , steric repulsion between H atoms of one of the pyridyl substituents of TPMA and one of the benzene rings of XBBIM results in a strong distortion of the FeII coordination environment, which stabilizes the high‐spin state of the complex. Both 1 and 2 exhibit a photoinduced low‐spin to high‐spin transition (LIESST effect) at 5 K. The difference in the character of intermolecular interactions of 1 and 2 also manifests in the kinetics of the decay of the photoinduced high‐spin state. For 1 , the decay rate constant follows the single‐exponential law, whereas for 2 it is a stretched exponential, reflecting the hierarchical nature of intermolecular contacts. The structural parameters of the photoinduced high‐spin state at 50 K are similar to those determined for the high‐spin state at 295 K. This study shows that N‐alkylation of BIM has a negligible effect on the ligand field strength. Therefore, the combination of TPMA and BIM offers a promising ligand platform for the design of functionalized SCO complexes.  相似文献   
68.
Room temperature magnetization of two dimensional (2D) arrays of cobalt nanowires (NWs) having diameter 50 and 150 nm prepared by electrodeposition are studied in details. Diffraction patterns of the NWs reveal that the crystallites of the NWs become more textured on decreasing their diameter. Magnetic hysteresis loop measurements show the magnetic easy axis changes its direction from axial to perpendicular direction of NWs on increasing the length of the NWs. The magnetostatic interaction among the NWs, known as the key factor in defining the easy direction is found not to be dipolar at all the circumstances. An aspect ratio (length/diameter of NWs) dependence of the non-dipolar interaction in 150 nm NWs is evident from the static magnetization as well as from ferromagnetic resonance (FMR) measurements.  相似文献   
69.
The synthesis, structure, and gas adsorption properties of three new metal-organic frameworks (MOFs) designed from isonicotinic acid (INA) and its fluorinated analogue 3-fluoroisonicotinic acid (FINA) along with Co(II) as the metal center have been reported. Co-INA-1 ([Co(3)(INA)(4)(O)(C(2)H(5)OH)(3)][NO(3)]·C(2)H(5)OH·3H(2)O; INA=isonicotinic acid) and Co-INA-2 ([Co(INA)(2)]·DMF) are structural isomers as are Co-FINA-1 ([Co(3-)(FINA)(4)(O)(C(2) H(5) OH)(2)]·H(2)O; FINA=3-fluoroisonicotinic acid) and Co-FINA-2 ([Co(FINA)(2)]·H(2)O), but the most important thing to note here is that Co-INA-1 and Co-FINA-1 are isostructural as are Co-INA-2 and Co-FINA-2. The effect of partial introduction of fluorine atoms into the framework on the gas uptake properties of MOFs having similar structures has been analyzed experimentally and computationally in isostructural MOFs.  相似文献   
70.
A fully transparent and flexible field emission device (FED) has been demonstrated. Single‐walled carbon nanotubes (SWCNTs) coated on arylite substrate were used as electron emitters for the FED and a novel metavanadate phosphor coated on the SWCNTs/arylite film was used as transparent and flexible screen. The SWCNTs/arylite based emitters and the SWCNTs/arylite/metal‐vanadate‐based phosphor showed a transmittance value of 92.6% and 54%, respectively. The assembled device also showed satisfactory transparency and flexibility as well as producing significant current. Metavanadate phosphor is considered to be an excellent candidate due to its superior luminescence properties and easy fabrication onto transparent and flexible conductive substrate at room temperature while retaining reasonable transparency of the substrate. Thus, its transparency and flexibility will open the door to next‐generation FEDs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号