首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   924篇
  免费   29篇
  国内免费   7篇
化学   678篇
晶体学   8篇
力学   20篇
数学   138篇
物理学   116篇
  2023年   6篇
  2022年   11篇
  2021年   13篇
  2020年   18篇
  2019年   13篇
  2018年   12篇
  2017年   14篇
  2016年   14篇
  2015年   19篇
  2014年   24篇
  2013年   57篇
  2012年   70篇
  2011年   61篇
  2010年   38篇
  2009年   12篇
  2008年   47篇
  2007年   58篇
  2006年   50篇
  2005年   42篇
  2004年   46篇
  2003年   47篇
  2002年   31篇
  2001年   11篇
  2000年   13篇
  1998年   5篇
  1997年   10篇
  1996年   12篇
  1995年   13篇
  1994年   12篇
  1993年   4篇
  1992年   11篇
  1991年   11篇
  1990年   8篇
  1989年   6篇
  1988年   4篇
  1987年   7篇
  1985年   4篇
  1984年   9篇
  1982年   7篇
  1981年   7篇
  1980年   6篇
  1979年   5篇
  1978年   13篇
  1977年   8篇
  1976年   12篇
  1975年   9篇
  1974年   7篇
  1973年   8篇
  1972年   6篇
  1970年   7篇
排序方式: 共有960条查询结果,搜索用时 13 毫秒
941.
The interaction between a 2-chlorophenol (C6H4OHCl) molecule and the Cu(1 1 1) surface has been investigated using density functional theory as an initial step in gaining a better understanding of the catalyzed formation of dioxin compounds on a clean copper surface. The 2-chlorophenol molecule is found to form several weakly bonded, horizontally and vertically oriented configurations. Dissociative modes have also been investigated. For the latter, the formation of phenyl and benzyne fragments is found to be more energetically favourable than the formation of 2-chlorophenoxy radicals.  相似文献   
942.
Filopodia are long, fingerlike membrane tubes supported by cytoskeletal filaments. Their shape is determined by the stiffness of the actin filament bundles found inside them and by the interplay between the surface tension and bending rigidity of the membrane. Although one might expect the Euler buckling instability to limit the length of filopodia, we show through simple energetic considerations that this is in general not the case. By further analyzing the statics of filaments inside membrane tubes, and through computer simulations that capture membrane and filament fluctuations, we show under which conditions filopodia of arbitrary lengths are stable. We discuss several in vitro experiments where this kind of stability has already been observed. Furthermore, we predict that the filaments in long, stable filopodia adopt a helical shape.  相似文献   
943.
The magnetic anisotropy of a ferromagnetic material that is free to deform is defined as the effective anisotropy, which is the sum of intrinsic anisotropy and magnetostriction-induced anisotropy. Prior works [1] and [2] (Baltzer, 1957; Kittel, 1949) indicate that if the material is undeformed then the measured anisotropy is same as its intrinsic anisotropy. When magnetostrictive materials are used as actuators or sensors they are often mechanically loaded, resulting in a restriction on the deformation. To capture their behavior in such scenarios, a modelling approach is required. Therefore, in this work, the thermodynamic accuracy of the common expressions for magnetostriction-induced and stress-induced anisotropies is first investigated. A 3D magnetoelastic model is then developed using Armstrong's implementation of an energy model. This 3D magnetoelastic model is capable of predicting the stresses induced when the magnetostriction of these materials is constrained. Using this model, it is shown that when the bulk magnetostriction of the material is clamped, the measured anisotropy will not in general be the same as the intrinsic anisotropy. It is also shown that when the magnetostriction is clamped at the microscopic level, i.e. if the material is locally constrained at the exchange length scales, then the measured anisotropy is the intrinsic anisotropy.  相似文献   
944.
The application of an active braze alloy (ABA) known as Copper ABA® (Cu–3.0Si–2.3Ti–2.0Al wt.%) to join Al2O3 to Kovar® (Fe–29Ni–17Co wt.%) has been investigated. This ABA was selected to increase the operating temperature of the joint beyond the capabilities of typically used ABAs such as Ag–Cu–Ti-based alloys. Silica present as a secondary phase in the Al2O3 at a level of ~5 wt.% enabled the ceramic component to bond to the ABA chemically by forming a layer of Si3Ti5 at the ABA/Al2O3 interface. Appropriate brazing conditions to preserve a near-continuous Si3Ti5 layer on the Al2O3 and a continuous Fe3Si layer on the Kovar® were found to be a brazing time of ≤15 min at 1025 °C or ≤2 min at 1050 °C. These conditions produced joints that did not break on handling and could be prepared easily for microscopy. Brazing for longer periods of time, up to 45 min, at these temperatures broke down the Si3Ti5 layer on the Al2O3, while brazing at ≥1075 °C for 2–45 min broke down the Fe3Si layer on the Kovar® significantly. Further complications of brazing at ≥1075 °C included leakage of the ABA out of the joint and the formation of a new brittle silicide, Ni16Si7Ti6, at the ABA/Al2O3 interface. This investigation demonstrates that it is not straightforward to join Al2O3 to Kovar® using Copper ABA®, partly because the ranges of suitable values for the brazing temperature and time are quite limited. Other approaches to increase the operating temperature of the joint are discussed.  相似文献   
945.
The cleavage of a C−C bond is a complexity generating process, which complements oxidation and cyclisation events in the biosynthesis of terpenoids. This process leads to increased structural diversity in a cluster of related secondary metabolites by modification of the parent carbocyclic core. In this review, we highlight the diversifying effect of C−C bond cleavage by examining the literature related to seco-labdanes—a class of diterpenoids arising from such C−C bond cleavage events.  相似文献   
946.
Living systems can form and recover complex chemical patterns with precisely sized features in the ranges of tens or hundreds of microns. We show how designed reaction–diffusion processes can likewise produce precise patterns, termed attractor patterns, that reform their precise shape after being perturbed. We use oligonucleotide reaction networks, photolithography, and microfluidic delivery to form precisely controlled attractor patterns and study the responses of these patterns to different localized perturbations. Linear and “hill”‐shaped patterns formed and stabilized into shapes and at time scales consistent with reaction–diffusion models. When patterns were perturbed in particular locations with UV light, they reliably reformed their steady‐state profiles. Recovery also occurred after repeated perturbations. By designing the far‐from‐equilibrium dynamics of a chemical system, this study shows how it is possible to design spatial patterns of molecules that are sustained and regenerated by continually evolving towards a specific steady state configuration.  相似文献   
947.
Microtubule-stabilizing agents (MSAs) are a class of compounds used in the treatment of triple-negative breast cancer (TNBC), a subtype of breast cancer where chemotherapy remains the standard-of-care for patients. Taxanes like paclitaxel and docetaxel have demonstrated efficacy against TNBC in the clinic, however new classes of MSAs need to be identified due to the rise of taxane resistance in patients. (−)-Zampanolide is a covalent microtubule stabilizer that can circumvent taxane resistance in vitro but has not been evaluated for in vivo antitumor efficacy. Here, we determine that (−)-zampanolide has similar potency and efficacy to paclitaxel in TNBC cell lines, but is significantly more persistent due to its covalent binding. We also provide the first reported in vivo antitumor evaluation of (−)-zampanolide where we determine that it has potent and persistent antitumor efficacy when delivered intratumorally. Future work on zampanolide to further evaluate its pharmacophore and determine ways to improve its systemic therapeutic window would make this compound a potential candidate for clinical development through its ability to circumvent taxane-resistance mechanisms.  相似文献   
948.
The crystal and molecular structure of augustamine (1), C17H19NO4 an amaryllidaceae alkaloid of the tazettine group has been determined by direct methods from single crystal x-ray diffractometer data and refined by full-matrix least squares. The alkaloid (1) crystallizes in the space group P212121, with cell parameters: a = 7.833(8) b = 11.08(2) å, c = 16.69(6) Å, Z = 4, Dc = 1.381 g/cm–3, R = 7.6% for 1115 observed reflections. The molecule, having a hexacyclic ring system, is very rigid with the ring B in a chair conformation. Molecular mechanics calculations have been made using MM3(2000) force field.  相似文献   
949.
Uranium compounds supported by redox-active α-diimine ligands, which have methyl groups on the ligand backbone and bulky mesityl substituents on the nitrogen atoms {(Mes)DAB(Me) = [ArN═C(Me)C(Me)═NAr], where Ar = 2,4,6-trimethylphenyl (Mes)}, are reported. The addition of 2 equiv of (Mes)DAB(Me), 3 equiv of KC(8), and 1 equiv of UI(3)(THF)(4) produced the bis(ligand) species ((Mes)DAB(Me))(2)U(THF) (1). The metallocene derivative, Cp(2)U((Mes)DAB(Me)) (2), was generated by the addition of an equimolar ratio of (Mes)DAB(Me) and KC(8) to Cp(3)U. The bond lengths in the molecular structure of both species confirm that the α-diimine ligands have been doubly reduced to form ene-diamide ligands. Characterization by electronic absorption spectroscopy shows weak, sharp transitions in the near-IR region of the spectrum and, in combination with the crystallographic data, is consistent with the formulation that tetravalent uranium ions are present and supported by ene-diamide ligands. This interpretation was verified by U L(III)-edge X-ray absorption near-edge structure (XANES) spectroscopy and by variable-temperature magnetic measurements. The magnetic data are consistent with singlet ground states at low temperature and variable-temperature dependencies that would be expected for uranium(IV) species. However, both complexes exhibit low magnetic moments at room temperature, with values of 1.91 and 1.79 μ(B) for 1 and 2, respectively. Iodomethane was used to test the reactivity of 1 and 2 for multielectron transfer. While 2 showed no reactivity with CH(3)I, the addition of 2 equiv of iodomethane to 1 resulted in the formation of a uranium(IV) monoiodide species, ((Mes)DAB(Me))((Mes)DAB(Me2))UI {3; (Mes)DAB(Me2) = [ArN═C(Me)C(Me(2))NAr]}, which was characterized by single-crystal X-ray diffraction and U M(4)- and M(5)-edge XANES. Confirmation of the structure was also attained by deuterium labeling studies, which showed that a methyl group was added to the ene-diamide ligand carbon backbone.  相似文献   
950.
Single-walled carbon nanotubes (SWCNTs) are versatile near infrared (NIR) fluorescent building blocks for biosensors. Their surface is chemically tailored to respond to analytes by a change in fluorescence. However, intensity-based signals are easily affected by external factors such as sample movements. Here, we demonstrate fluorescence lifetime imaging microscopy (FLIM) of SWCNT-based sensors in the NIR. We tailor a confocal laser scanning microscope (CLSM) for NIR signals (>800 nm) and employ time correlated single photon counting of (GT)10-DNA functionalized SWCNTs. They act as sensors for the important neurotransmitter dopamine. Their fluorescence lifetime (>900 nm) decays biexponentially and the longer lifetime component (370 ps) increases by up to 25 % with dopamine concentration. These sensors serve as paint to cover cells and report extracellular dopamine in 3D via FLIM. Therefore, we demonstrate the potential of fluorescence lifetime as a readout of SWCNT-based NIR sensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号