首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   638篇
  免费   9篇
  国内免费   1篇
化学   278篇
晶体学   6篇
力学   39篇
数学   150篇
物理学   175篇
  2021年   6篇
  2020年   4篇
  2019年   6篇
  2018年   3篇
  2016年   3篇
  2015年   11篇
  2014年   7篇
  2013年   25篇
  2012年   22篇
  2011年   29篇
  2010年   9篇
  2009年   15篇
  2008年   28篇
  2007年   32篇
  2006年   33篇
  2005年   34篇
  2004年   22篇
  2003年   15篇
  2002年   9篇
  2001年   17篇
  2000年   11篇
  1999年   12篇
  1998年   6篇
  1997年   6篇
  1996年   10篇
  1995年   12篇
  1994年   24篇
  1993年   22篇
  1992年   18篇
  1991年   10篇
  1990年   5篇
  1989年   8篇
  1988年   10篇
  1987年   7篇
  1986年   7篇
  1985年   12篇
  1984年   7篇
  1983年   11篇
  1982年   9篇
  1981年   7篇
  1980年   6篇
  1979年   10篇
  1978年   6篇
  1977年   8篇
  1976年   7篇
  1975年   11篇
  1974年   6篇
  1973年   8篇
  1968年   5篇
  1907年   4篇
排序方式: 共有648条查询结果,搜索用时 62 毫秒
111.
We have previously shown sugar-assisted ligation (SAL) to be a useful method for the convergent construction of glycopeptides. However to date SAL has only been carried out on systems where the thiol auxiliary is attached to a monosaccharide. For SAL to be truly applicable to the construction of fully elaborated glycopeptides and glycoproteins, it must be possible to carry out the reaction when the thiol auxiliary is attached to more elaborate sugars, as these are frequently what are observed in nature. Here we examine the effects of glycosylation at C-3, C-4, and C-6 of the C-2 auxiliary-containing glycan. Model glycopeptides where synthesized chemoenzymatically and reacted with peptide thioesters used in our previous work. These studies reveal that SAL is sensitive to extended glycosylation on the auxiliary-containing sugar. While it is possible to carry out SAL with extended glycosylation at C-4 and C-6, the presence of glycosylation at C-3 prevents the ligation from occurring. Additionally, with glycosylation at C-4 the ligation efficiency is affected by the identity of the N-terminal AA, while the nature of the C-terminal residue of the peptide thioester does not appear to affect ligation efficiency. These studies provide useful guidelines in deciding when it is appropriate to use SAL in the synthesis of complex glycopeptides and glycoproteins and how to choose ligation junctions for optimal yield.  相似文献   
112.
Choline is a precursor of cellular phospholipid metabolism that provides Magnetic Resonance (MR) and Positron Emission Tomography (PET) biomarkers for cancer detection and response assessment. Employing Dynamic Nuclear Polarization we show that the MR signal of 15N in choline can be enhanced by at least 4 orders of magnitude with a relaxation time of ca. 4 min, providing a method to observe the action of choline kinase, an important target for novel cancer therapeutics.  相似文献   
113.
Recently, we reported the development of sugar-assisted ligation (SAL), a novel peptide ligation method for the synthesis of glycopeptides. After screening a large number of glycoprotein sequences in a glycoprotein database, it became evident that a large proportion (approximately 53%) of O-glycosylation sites contain amino acid residues that will not undergo SAL reactions. To overcome these inherent limitations and broaden the scope of the method we report here the development of an extended SAL method. Glycopeptides containing up to six amino acid extensions N-terminal to the glycosylated residue were shown to facilitate ligation reactions with peptide thioesters, and these products were isolated in good yields. Kinetic analysis was used to show that as glycopeptides were extended by further amino acid residues, ligation reactions became slower. This finding was rationalized by molecular dynamics simulations using AMBER9. These studies suggested a general trend whereby the proximal distance between the reactive sites of the thioester intermediate (the N-terminal amine and the carbonyl carbon of the thioester) increased as glycopeptides were extended, thus slowing down the ligation rate. Each of the extended SAL methods showed broad tolerance to a number of different amino acid combinations at the ligation junction. Re-evaluation of the glycoprotein database suggested that 95% of the O-linked glycosylation sites can now be utilized to facilitate SAL or extended SAL reactions. As such, this method represents an extremely valuable tool for the synthesis of naturally occurring glycopeptides and glycoproteins. To demonstrate the applicability of the method, extended SAL was successfully implemented in the synthesis of the starting unit of the cancer-associated MUC1 glycoprotein.  相似文献   
114.
Ladyzhenskaya & Solonnikov (1976) introduced a representationtheorem in 3, which contained an integral inequality involvinga multiplicative dimensionless constant. The existence of theconstant was established but not its magnitude which dependsonly on the shape of the domain. In this paper, we derive anupper bound for the optimal constant when the underlying domainis star shaped.  相似文献   
115.
We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidized Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO(2) polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress, and interactions with single water molecules of a natively oxidized Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidized and amorphous silica surfaces of 97 and 90 mJm(2), respectively, at a water adsorption coverage of approximately 1 ML. The difference arises from the stronger interaction of the natively oxidized surface with liquid water, resulting in a higher heat of immersion (203 vs 166 mJm(2)), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller densities with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account.  相似文献   
116.
The heterogeneous nucleation of gas bubbles from cavities in a surface in contact with a liquid is a widely recognized phenomenon. This process has previously been theoretically analyzed extensively for a conical crevice, although in practice a wide range of cavity geometries might be expected. The method of analysis originally presented by Atchley and Prosperetti [J. Acoust. Soc. Am. 86, 1065-1084 (1989)] for the unstable growth of a gas-liquid interface in a conical crevice is here extended to any axisymmetric cavity geometry and four such different geometries are analyzed. Although the method presented neglects gas transfer, and therefore is most directly suitable for acoustic cavitations, this method is still valuable in comparing the nucleation behavior of different cavity types. It is found that once the interface has emerged outside the cavity, its behavior is determined by the size of the cavity's opening. Given that the behavior of the interface once it is outside the cavity will also be determined by the local flow conditions, the threshold for unstable growth of the interface inside the cavity leading to its emergence is the important value and will determine differences between cavity geometries in practice, as shown in the examples presented.  相似文献   
117.
Zeolite materials are microporous aluminosilicates with various uses, including acting as important catalysts in many processes. One such process is the methanol to gasoline reaction, used widely in industry. This reaction is known to be associated with Brønsted acid sites in the zeolite, formed when Si is substituted by Al in the framework, with an associated H+ being bound nearby to maintain charge neutrality. However, it is not clear exactly what role the proton plays in this reaction. Because of the large unit cell (generally 50-300 atoms, depending on the particular zeolite) of such structures, most ab initio calculations of these materials have focused on studying small clusters representing just a portion of the framework. However, by choosing the chabazite zeolite structure, which has only 36 atoms in the primitive unit cell, we have been able to perform a full periodic ab initio calculation. This has used density functional theory with a generalized gradient approximation for the exchange-correlation energy, a plane-wave basis set, and norm-conserving optimized pseudopotentials. Using these methods we have examined the geometry and electronic structure of a zeolite acid site and considered one way in which a methanol molecule may bind to such a site. © 1997 John Wiley & Sons, Inc.  相似文献   
118.
The development of an iterative one-pot peptide ligation strategy is described that capitalises on the rapid and efficient nature of the diselenide–selenoester ligation reaction, together with photodeselenisation chemistry. This ligation strategy hinged on the development of a novel photolabile protecting group for the side chain of selenocysteine, namely the 7-diethylamino-3-methyl coumarin (DEAMC) moiety. Deprotection of this DEAMC group can be effected in a mild, reagent-free manner using visible light (λ = 450 nm) without deleterious deselenisation of selenocysteine residues, thus enabling a subsequent ligation reaction without purification. The use of this DEAMC-protected selenocysteine in iterative DSL chemistry is highlighted through the efficient one-pot syntheses of 60- and 80-residue fragments of mucin-1 as well as apolipoprotein CIII in just 2–4 hours.

A method for the rapid one-pot iterative assembly of proteins via diselenide–selenoester ligation (DSL) chemistry is described that capitalises on a novel coumarin-based photolabile protecting group for selenocysteine.  相似文献   
119.
120.
The reactivity of triplet 16-electron organometallic species has been studied in room-temperature solution using femtosecond UV pump IR probe spectroscopy. Specifically, the Si-H bond-activation reaction of photogenerated triplet Fe(CO)(4) and triplet CpCo(CO) with triethylsilane has been characterized and compared to the known singlet species CpRh(CO). The intermediates observed were studied using density functional theory (DFT) as well as ab initio quantum chemical calculations. The triplet organometallics have a greater overall reactivity than singlet species due to a change in the Si-H activation mechanism, which is due to the fact that triplet intermediates coordinate weakly at best with the ethyl groups of triethylsilane. Consequently, the triplet species do not become trapped in alkyl-solvated intermediate states. The experimental results are compared to the theoretical calculations, which qualitatively reproduce the trends in the data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号