首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3570篇
  免费   142篇
  国内免费   26篇
化学   2470篇
晶体学   23篇
力学   53篇
数学   549篇
物理学   643篇
  2023年   19篇
  2022年   42篇
  2021年   98篇
  2020年   88篇
  2019年   106篇
  2018年   120篇
  2017年   81篇
  2016年   140篇
  2015年   128篇
  2014年   146篇
  2013年   203篇
  2012年   241篇
  2011年   261篇
  2010年   178篇
  2009年   114篇
  2008年   244篇
  2007年   243篇
  2006年   220篇
  2005年   194篇
  2004年   152篇
  2003年   124篇
  2002年   101篇
  2001年   48篇
  2000年   32篇
  1999年   38篇
  1998年   37篇
  1997年   23篇
  1996年   32篇
  1995年   23篇
  1994年   29篇
  1993年   18篇
  1992年   12篇
  1991年   11篇
  1989年   9篇
  1988年   13篇
  1986年   7篇
  1985年   8篇
  1984年   10篇
  1983年   9篇
  1982年   11篇
  1981年   7篇
  1980年   10篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1976年   12篇
  1975年   14篇
  1973年   8篇
  1972年   7篇
  1954年   5篇
排序方式: 共有3738条查询结果,搜索用时 271 毫秒
111.
Law WS  Kubán P  Zhao JH  Li SF  Hauser PC 《Electrophoresis》2005,26(24):4648-4655
The separation and detection of commonly used preservatives (benzoate, sorbate) and vitamin C by both conventional CE and microchip electrophoresis with capacitively coupled contactless conductivity detection is presented. The separation was optimized by adjusting the pH-value of the buffer and the use of hydroxypropyl-beta-CD (HP-beta-CD) and CTAB as additives. For conventional CE, optimal separation conditions were achieved in a histidine/tartrate buffer at pH 6.5, containing 0.025% HP-beta-CD and 0.1 mM CTAB. LOD ranged from 0.5 to 3 mg/L (S/N = 3) and the RSDs for migration time and peak area were less than 0.1 and 2%, respectively. A considerable reduction of analysis time can be accomplished by using microchip electrophoresis without significant loss in sensitivity under optimal separation conditions. A histidine/tartrate buffer at pH 6.5, incorporating 0.06% HP-beta-CD and 0.25 mM CTAB, gave detection limits ranging between 3 and 10 mg/L and satisfactory reproducibilities of < or =0.4% for the migration time and < or =3.5% for the peak area. The methods developed are useful for the quantitative determination of food additives in real samples such as soft drinks and vitamin C tablets.  相似文献   
112.
The geometries and interaction energies of stacked and hydrogen-bonded uracil dimers and a stacked adeninecdots, three dots, centeredthymine pair were studied by means of high-level quantum chemical calculations. Specifically, standard as well as counterpoise-corrected optimizations were performed at second-order Moller-Plesset (MP2) and coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)] levels with various basis sets up to the complete basis set limit. The results can be summarized as follows: (i) standard geometry optimization with small basis set (e.g., 6-31G(*)) provides fairly reasonable intermolecular separation; (ii) geometry optimization with extended basis sets at the MP2 level underestimates the intermolecular distances compared to the reference CCSD(T) results, whereas the MP2/cc-pVTZ counterpoise-corrected optimization agrees well with the reference geometries and, therefore, is recommended as a next step for improving MP2/cc-pVTZ geometries; (iii) the stabilization energy of stacked nucleic acids base pairs depends considerably on the method used for geometry optimization, so the use of reliable geometries, such as counterpoise-corrected MP2/cc-pVTZ ones, is recommended; (iv) the density functional theory methods fail completely in locating the energy minima for stacked structures and when the geometries from MP2 calculations are used, the resulting stabilization energies are strongly underestimated; (v) the self-consistent charges-density functional tight binding method, with inclusion of the empirical dispersion energy, accurately reproduces interaction energies and geometries of dispersion-bonded (stacked) complexes; this method can thus be recommended for prescanning the potential energy surfaces of van der Waals complexes.  相似文献   
113.
Both particle packed (25 cm x 0.46 cm I.D. SUPELCOSIL 5 microm C18) and monolithic type (10 cm x 0.46 cm I.D. Merck Chromolith Performance C18) reversed-phase substrates were dynamically coated with a carboxybetaine type zwitterionic surfactant ((dodecyldimethyl-amino) acetic acid) and investigated as stationary phases for use in zwitterionic ion chromatography (ZIC). Investigations into eluent concentration and pH were carried out using KCl eluents containing 0.2 mM of the carboxybetaine surfactant to stabilise the column coatings. It was found that eluent concentration decreased anion retention whilst simultaneously increasing peak efficiencies, which may be due to the dissociation of intra- and inter-molecular salts of the carboxybetaine surfactant under higher ionic strength conditions. The Effect of eluent pH was an increase in anion retention with decreased eluent pH due to the increased protonation of the weak acid terminal group of the carboxybetaine, causing both a relative increase in the positive charge of the stationary phase and less repulsion of the anions by the dissociated weak acid group. The carboxybetaine-coated monolithic phase was applied to rapid anion separations using elevated flow rates and flow rate gradients.  相似文献   
114.
The structures, strain energies, and enthalpies of formation of diamantane 1, triamantane 2, isomeric tetramantanes 3-5, T(d)-pentamantane 6, and D(3d)-hexamantane 7, and the structures of their respective radicals, cations, as well as radical cations, were computed at the B3LYP/6-31G* level of theory. For the most symmetrical hydrocarbons, the relative strain (per carbon atom) decreases from the lower to the higher diamondoids. The relative stabilities of isomeric diamondoidyl radicals vary only within small limits, while the stabilities of the diamondoidyl cations increase with cage size and depend strongly on the geometric position of the charge. Positive charge located close to the geometrical center of the molecule is stabilized by 2-5 kcal mol(-1). In contrast, diamondoid radical cations preferentially form highly delocalized structures with elongated peripheral C-H bonds. The effective spin/charge delocalization lowers the ionization potentials of diamondoids significantly (down to 176.9 kcal mol(-1) for 7). The reactivity of 1 was extensively studied experimentally. Whereas reactions with carbon-centered radicals (Hal)(3)C(*) (Hal=halogen) lead to mixtures of all possible tertiary and secondary halodiamantanes, uncharged electrophiles (dimethyldioxirane, m-chloroperbenzoic acid, and CrO(2)Cl(2)) give much higher tertiary versus secondary selectivities. Medial bridgehead substitution dominates in the reactions with strong electrophiles (Br(2), 100 % HNO(3)), whereas with strong single-electron transfer (SET) acceptors (photoexcited 1,2,4,5-tetracyanobenzene) apical C(4)-H bridgehead substitution is preferred. For diamondoids that form well-defined radical cations (such as 1 and 4-7), exceptionally high selectivities are expected upon oxidation with outer-sphere SET reagents.  相似文献   
115.
The results of harmonic and anharmonic frequency calculations on a guanine-cytosine complex with an enolic structure (a tautomeric form with cytosine in the enol form and with a hydrogen at the 7-position on guanine) are presented and compared to gas-phase IR-UV double resonance spectral data. Harmonic frequencies were obtained at the RI-MP2/cc-pVDZ, RI-MP2/TZVPP, and semiempirical PM3 levels of electronic structure theory. Anharmonic frequencies were obtained by the CC-VSCF method with improved PM3 potential surfaces; the improved PM3 potential surfaces are obtained from standard PM3 theory by coordinate scaling such that the improved PM3 harmonic frequencies are the same as those computed at the RI-MP2/cc-pVDZ level. Comparison of the data with experimental results indicates that the average absolute percentage deviation for the methods is 2.6% for harmonic RI-MP2/cc-pVDZ (3.0% with the inclusion of a 0.956 scaling factor that compensates for anharmonicity), 2.5% for harmonic RI-MP2/TZVPP (2.9% with a 0.956 anharmonicity factor included), and 2.3% for adapted PM3 CC-VSCF; the empirical scaling factor for the ab initio harmonic calculations improves the stretching frequencies but decreases the accuracy of the other mode frequencies. The agreement with experiment supports the adequacy of the improved PM3 potentials for describing the anharmonic force field of the G...C base pair in the spectroscopically probed region. These results may be useful for the prediction of the pathways of vibrational energy flow upon excitation of this system. The anharmonic calculations indicate that anharmonicity along single mode coordinates can be significant for simple stretching modes. For several other cases, coupling between different vibrational modes provides the main contribution to anharmonicity. Examples of strongly anharmonically coupled modes are the symmetric stretch and group torsion of the hydrogen-bonded NH2 group on guanine, the OH stretch and torsion of the enol group on cytosine, and the NH stretch and NH out-of-plane bend of the non-hydrogen-bonded NH group on guanine.  相似文献   
116.
The nature and dynamics of the lowest excited states of fac-[Re(I)(L)(CO)(3)(phen)](+) and fac-[Re(I)(L)(CO)(3)(5-NO(2)-phen)](+) [L = Cl(-), 4-ethyl-pyridine (4-Etpy), imidazole (imH); phen = 1,10-phenanthroline] have been investigated by picosecond visible and IR transient absorption spectroscopy in aqueous (L = imH), acetonitrile (L = 4-Etpy, imH), and MeOH (L = imH) solutions. The phen complexes have long-lived Re(I) --> phen (3)MLCT excited states, characterized by CO stretching frequencies that are upshifted relative to their ground-state values and by widely split IR bands due to the out-of-phase A'(2) and A"nu(CO) vibrations. The lowest excited states of the 5-NO(2)-phen complexes also have (3)MLCT character; the larger upward nu(CO) shifts accord with much more extensive charge transfer from the Re(I)(CO)(3) unit to 5-NO(2)-phen in these states. Transient visible absorption spectra indicate that the excited electron is delocalized over the 5-NO(2)-phen ligand, which acquires radical anionic character. Similarly, involvement of the -NO(2) group in the Franck-Condon MLCT transition is manifested by the presence of an enhanced nu(NO(2)) band in the preresonance Raman spectrum of [Re(I)(4-Etpy)(CO)(3)(5-NO(2)-phen)](+). The Re(I) --> 5-NO(2)-phen (3)MLCT excited states are very short-lived: 7.6, 170, and 43 ps for L = Cl(-), 4-Etpy, and imH, respectively, in CH(3)CN solutions. The (3)MLCT excited state of [Re(I)(imH)(CO)(3)(5-NO(2)-phen)](+) is even shorter-lived in MeOH (15 ps) and H(2)O (1.3 ps). In addition to (3)MLCT, excitation of [Re(I)(imH)(CO)(3)(5-NO(2)-phen)](+) populates a (3)LLCT (imH --> 5-NO(2)-phen) excited state. Most of the (3)LLCT population decays to the ground state (time constants of 19 (H(2)O), 50 (MeOH), and 72 ps (CH(3)CN)); in a small fraction, however, deprotonation of the imH.+ ligand occurs, producing a long-lived species, [Re(I)(im.)(CO)(3)(5-NO(2)-phen).-]+.  相似文献   
117.
118.
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号