首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   11篇
  国内免费   5篇
化学   156篇
力学   6篇
数学   7篇
物理学   18篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   8篇
  2020年   11篇
  2019年   21篇
  2018年   14篇
  2017年   9篇
  2016年   15篇
  2015年   5篇
  2014年   17篇
  2013年   11篇
  2012年   20篇
  2011年   10篇
  2010年   6篇
  2009年   11篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2000年   1篇
  1995年   1篇
排序方式: 共有187条查询结果,搜索用时 0 毫秒
31.
Transition Metal Chemistry - The aerobic oxidation of a variety of aromatic aldehydes to the corresponding carboxylic acids by molecular oxygen in the presence of 4-carboxyl tetraphenylporphyrin...  相似文献   
32.
Facile and potent homogeneous liquid–liquid microextraction via flotation assistance method (HLLME-FA) combined with gas chromatography-mass spectrometry was proposed for determination of trace amounts of myclobutanil in fruit and vegetable samples. The paramount parameters, such as extraction and homogeneous solvent types and volumes, ionic strength and extraction time were studied. Under optimum conditions, the detection limit of 0.005 ng g?1, the linear range of 0.05–100 ng g?1, and the precision of 3.8% were acquired. A three-layer arti?cial neural network (ANN) model was used with 10 neurons and tan-sigmoid function at hidden layer and a linear transfer function at output layer were developed to predict the process. The results indicated that the proposed ANN model could perfectly predict the process with the mean square error of 0.89%. Then genetic algorithm was utilised to optimise the parameters. The proposed procedure showed satisfactory results for analysis of cucumber, tomato, grape, and strawberry.  相似文献   
33.
2-Thenoyltrifluoroacetone has been offered as a mobile carrier in organic phase for the transport and selective separation of yttrium from aqueous media using a liquid membrane system. Perceivably, the use of n-propylamine (PA) in the source phase enhances the transport of yttrium ions. The extraction and stripping conditions have entirely been evaluated and explained. The suggested method has been utilized for the separation of yttrium(III) from its binary mixtures with strontium(II) and some other cations such as Ni2+, Co2+, Ag+, Fe2+, Al3+, Cu2+, Hg2+and Cs+ in aqueous solutions of pH 5.4 in the presence of PA, while 1 M nitric acid was acting as a stripping agent in the receiving division. Cyanide ion and 5-sulfosalicylic acid have been used as masking agents to minimize the interferences from different transition metal ions and Al3+ in the source phase, respectively. 90Y in secular equilibrium with 90Sr in the source phase, was transferred to receiving phase and separated completely from its long-lived parent isotope. The activity of the transported 90Y was found to decay with a half-life 64.17 ± 0.05 h. The purity of yttrium-90 was comparable or better than the other applied liquid membrane systems for purification of yttrium-90.  相似文献   
34.
Local names are not reliable sources for identification of plants, because they differ significantly from one region to another. Apart from confusing nomenclature, the similar appearance and fragrance of Shirazi thyme and Thymus species cause misidentification. In order to prevent the adverse events in relation to the use of improper herbal products, easy-to-use quality control (QC) methodology was developed to classify these culinary plants. Fourier transform infrared (FT-IR) fingerprinting technique was applied for classification of these plants on the basis of their biochemical compositions. Powerful PLS-DA classification model with classification accuracy of 100% was obtained. For the first time in the present study, it was revealed that Shirazi thyme samples have higher antioxidant activity [average IC50 of 37.03 (µg/ml)] compared to different Thymus species [average IC50 of 148.35 (µg/ml)]. FT-IR fingerprint profiles were also used to construct a predictive model for antioxidant activity of the plants based on a reliable PLSR model. The developed PLSR model revealed that IR wavenumbers of 1000–1200, 1700, and 3200–3500 cm?1 are important for antioxidant activity prediction of the analyzed plants. The applied approach has the potential for being used in QC programs not only for fraud mitigation and detection, but also for estimation of antioxidant activity of the culinary plants.  相似文献   
35.
In this paper, a novel and convenient electrochemical sensor for detection of methimazole (MMI) by differential pulse voltammetry is presented. This sensor was fabricated by dripping well-dispersed MWCNTs onto glassy carbon electrode (GCE) surface, and then poly-l-Arg (P-L-Arg) film was deposited on the electrode. Finally, Cu nanoparticles (CuNPs) were electrochemically deposited on the resulting film by using cyclic voltammetry to prepare CuNPs-P-L-Arg/MWCNTs/GCE. The surface morphology of the electrodes has been studied by scanning electron microscopy. Studies reveal that the irreversible oxidation of MMI was highly facile on CuNPs-P-L-Arg/MWCNTs/GCE. The dynamic detection range of this sensor to MMI was 5.2–50 µM, with the detection limit of 2 µM. A new voltammetric method for determination of MMI was erected and shows good sensitivity and selectivity, very easy surface update and good stability. The analytical application of the modified electrode is demonstrated by determining MMI in biological fluids (serum).  相似文献   
36.
Biochar is a stable and carbon‐rich solid which has a high density of carbonyl, hydroxyl and carboxylic acid functional groups on its surface. In this work, the surface of biochar nanoparticles (BNPs) was modified with 3‐choloropropyltrimtoxysilane and further 2‐(thiophen‐2‐yl)‐1H‐benzo[d]imidazole was anchored on its surface. Then, palladium nanoparticles were fabricated on the surface of the modified BNPs and further the catalytic application was studied as recyclable biocatalyst in carbon–carbon coupling reactions such as Suzuki–Miyaura and Heck–Mizoroki cross‐coupling reactions. The structure of the catalyst was characterized using scanning electron microscopy, transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, thermogravimetric analysis, X‐ray diffraction and atomic absorption spectroscopy. The catalyst can be reused several times without a decrease in its catalytic efficiency. In addition to the several advantages reported, application of biochar as catalyst support for the first time is a major novelty of the present work.  相似文献   
37.
In this work, a green approach is reported for efficient synthesis of biologically active tetrazole and pyranopyrazole derivatives in the presence of Cu-Cytosine@MCM-41 and Ni-Cytosine@MCM-41 (copper (II) and nickel (II) catalyst on the modified MCM-41 using cytosine). The synthesis of tetrazoles and pyranopyrazoles in the presence of these catalysts was performed in green solvents such as water or poly (ethylene glycol) (PEG). All products were obtained in high TOF (turnover frequency) numbers in the presence of these catalysts, which indicate the high efficiency of these catalysts in the synthesis of tetrazole and pyranopyrazole derivatives. The prepared catalysts were characterized by various techniques such as BET, TGA, XRD, FT-IR, SEM, EDS, WDX, TEM, and AAS. Mesoporous structure of these catalysts was confirmed by nitrogen adsorption–desorption isotherms. These catalysts can be recovered and reused for several runs without significant change in their catalytic activity or metal capacity. The recovered catalysts have been characterized by XRD, SEM, EDS, WDX, FT-IR and AAS techniques, by which their heterogeneous nature has been confirmed.  相似文献   
38.
A gram-scale synthesis of a series of 1,1,n,n-tetramethyl[n](2,11)teropyrenophanes (n=7–9) has been accomplished as well as the first synthesis of the next higher homologue 1,1,10,10-tetramethyl[10](2,11)teropyrenophane. The scale-up of the original small-scale synthesis required the development of several heavily modified synthetic methods, including a chlorination/Friedel–Crafts alkylation protocol and an iodination/Wurtz coupling protocol, which were performed on 25–30 g and 30–60 g scales, respectively. Two separate sets of conditions for the key teropyrene-forming cyclodehydrogenation reaction at the end of the synthetic pathway were developed, an acid-promoted one for the two less strained congeners and an acid-free method for the two more strained homologues.  相似文献   
39.
In this work, a glassy carbon electrode (GCE) was modified with multiwall carbon nanotubes/ionic liquid/graphene quantum dots (MWCNTs/IL/GQDs) nanocomposite. Then, the nanocomposite was decorated with nickel‐cobalt nanoparticles (Ni?Co NPs), and it was used as a non‐enzymatic glucose sensor. Field emission scanning electron microscopy, X‐ray diffraction spectroscopy, and energy dispersive spectroscopy were employed to prove the electrodeposition of the Ni?Co NPs on the surface of MWCNTs/IL/GQDs/GCE. Also, cyclic voltammetric and amperometric methods were utilized for the investigation of the electrochemical behaviour of the Ni?Co NPs/MWCNTs/IL/GQDs/GCE for glucose oxidation. The novel amperometric sensor displayed two linear ranges from 1.0 to 190.0 μmol L?1 and 190.0 to 4910 μmol L?1 with a low detection limit of 0.3 μmol L?1 as well as fast response time (2 s) and high stability. Also, the sensor showed good selectivity for glucose determination in the presence of ascorbic acid, citric acid, dopamine, uric acid, fructose, and sucrose, as potential interference species. Finally, the performance of the proposed sensor was investigated for the glucose determination in real samples. Ni?Co NPs/MWCNTs/IL/GQDs/GCE showed good sensitivity and excellent selectivity.  相似文献   
40.
In this study, discrete element method (DEM) was employed to simulate the movement of non-cohesive mono-dispersed particles in a V-blender along with particle-particle and particle-boundary interactions. To validate the model, DEM results were successfully compared to positron emission particle tracking (PEPT) data reported in literature. The validated model was then utilized to explore the effects of rotational speed and fill level on circulation intensity and axial dispersion coefficient of non-cohesive particles in the V-blender. The results showed that the circulation intensity increased with an increase in the rotational speed from 15 to 60 rpm. As the fill level increased from 20% to 46%, the circulation intensity decreased, reached its minimum value at a fill level of 34% for all rotational speeds, and did not change significantly at fill levels greater than 34%. The DEM results also revealed that the axial dispersion coefficient of particles in the V-blender was a linear function of the rotational speed. These trends were in good agreement with the experimentallv determined values reported bv previous researchers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号