首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   3篇
化学   27篇
数学   15篇
物理学   3篇
  2022年   2篇
  2021年   1篇
  2019年   5篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
21.
Symmetry is an important mathematical concept which plays an extremely important role as a problem-solving technique. Nevertheless, symmetry is rarely used in secondary school in solving mathematical problems. Several investigations demonstrate that secondary school mathematics teachers are not aware enough of the importance of this elegant problem-solving tool. In this paper we present examples of problems from several branches of mathematics that can be solved using different types of symmetry. Teachers' attitudes and beliefs regarding the use of symmetry in the solutions of these problems are discussed.  相似文献   
22.
23.
Undesirable phototoxic and photoallergic reactions accompanying a justified increased use of sunscreen active ingredients within cosmetic products have encouraged the development of new products safer for human use. The sol-gel microencapsulation technology developed utilizes an interfacial polymerization process, allowing for the achievement of transparent silica glass microcapsules with sizes ranging between 0.3–3 microns and a characteristic core-shell structure. Within the sol-gel microcapsule structure a UV absorber core, constituting roughly 80% of the final product weight, is enclosed within a silica shell. These advanced sunscreen actives are then incorporated into a suitable cosmetic vehicle to achieve high Sun Protection Factors (SPF), while affording an improved safety profile, as the penetration of the UV absorbers is markedly reduced.  相似文献   
24.
An engineered version of the staphylococcal alpha-hemolysin protein pore, bearing a peptide inhibitor near the entrance to the beta barrel, interacts with the catalytic (C) subunit of cAMP-dependent protein kinase. By monitoring the ionic current through the pore, binding events are detected at the single-molecule level. The kinetic and thermodynamic constants governing the binding interaction and the synergistic effect of MgATP are comparable but not identical to the values in bulk solution. Further, the values are strongly dependent on the applied membrane potential. Additional exploration of these findings may lead to a better understanding of the properties of enzymes at the lipid/water interface. Despite the complications, we suggest that the engineered pore might be used as a sensor element to screen inhibitors that act at either the substrate or ATP binding sites of the C subunit.  相似文献   
25.
Individual nucleic acid molecules might be sequenced by the identification of nucleoside 5'-monophosphates as they are released by processive exonucleases. Here, we show that single molecule detection with a modified protein nanopore can be used to identify ribonucleoside and 2'-deoxyribonucleoside 5'-monophosphates, thereby taking a step along this path. Distinct levels of current block are observed for each of the four members of a set of nucleoside 5'-monophosphates when the molecules bind within a mutant alpha-hemolysin pore, (M113R)(7), equipped with the molecular adapter heptakis-(6-deoxy-6-amino)-beta-cyclodextrin. While our results compare favorably with alternative approaches, further work will be required to improve the accuracy of identification of the nucleic acid bases, to feed each released nucleotide into the pore, and to ensure that every nucleotide is captured by the adapter.  相似文献   
26.
27.
The importance of examples and exemplification in mathematical thinking, learning and teaching, is well recognized by mathematicians, epistemologists and mathematics educators. In the collection of papers on these topics presented in this issue, we aim to contribute to the debate on this theme, proposing original studies carried out from different approaches and perspectives, and linked to other relevant topics within mathematics education.  相似文献   
28.
Insulin analogues, mainstays in the modern treatment of diabetes mellitus, exemplify the utility of protein engineering in molecular pharmacology. Whereas chemical syntheses of the individual A and B chains were accomplished in the early 1960s, their combination to form native insulin remains inefficient because of competing disulfide pairing and aggregation. To overcome these limitations, we envisioned an alternative approach: pairwise substitution of cysteine residues with selenocysteine (Sec, U). To this end, CysA6 and CysA11 (which form the internal intrachain A6–A11 disulfide bridge) were each replaced with Sec. The A chain[C6U, C11U] variant was prepared by solid-phase peptide synthesis; while sulfitolysis of biosynthetic human insulin provided wild-type B chain-di-S-sulfonate. The presence of selenium atoms at these sites markedly enhanced the rate and fidelity of chain combination, thus solving a long-standing challenge in chemical insulin synthesis. The affinity of the Se-insulin analogue for the lectin-purified insulin receptor was indistinguishable from that of WT-insulin. Remarkably, the thermodynamic stability of the analogue at 25 °C, as inferred from guanidine denaturation studies, was augmented (ΔΔGu ≈0.8 kcal mol−1). In accordance with such enhanced stability, reductive unfolding of the Se-insulin analogue and resistance to enzymatic cleavage by Glu-C protease occurred four times more slowly than that of WT-insulin. 2D-NMR and X-ray crystallographic studies demonstrated a native-like three-dimensional structure in which the diselenide bridge was accommodated in the hydrophobic core without steric clash.  相似文献   
29.
Tumor hypoxia, the “Achilles’ heel” of current cancer therapies, is indispensable to drug resistance and poor therapeutic outcomes especially for radiotherapy. Here we propose an in situ catalytic oxygenation strategy in tumor using porphyrinic metal‐organic framework (MOF)‐gold nanoparticles (AuNPs) nanohybrid as a therapeutic platform to achieve O2‐evolving chemoradiotherapy. The AuNPs decorated on the surface of MOF effectively stabilize the nanocomposite and serve as radiosensitizers, whereas the MOF scaffold acts as a container to encapsulate chemotherapeutic drug doxorubicin. In vitro and in vivo studies verify that the catalase‐like nanohybrid significantly enhances the radiotherapy effect, alleviating tumor hypoxia and achieving synergistic anticancer efficacy. This hybrid nanomaterial remarkably suppresses the tumor growth with minimized systemic toxicity, opening new horizons for the next generation of theranostic nanomedicines.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号