首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   21篇
  国内免费   2篇
化学   208篇
晶体学   3篇
力学   8篇
数学   84篇
物理学   70篇
  2024年   1篇
  2023年   6篇
  2022年   17篇
  2021年   14篇
  2020年   20篇
  2019年   9篇
  2018年   10篇
  2017年   8篇
  2016年   25篇
  2015年   21篇
  2014年   20篇
  2013年   23篇
  2012年   22篇
  2011年   23篇
  2010年   10篇
  2009年   12篇
  2008年   27篇
  2007年   28篇
  2006年   14篇
  2005年   6篇
  2004年   12篇
  2003年   8篇
  2002年   14篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
  1985年   2篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1914年   4篇
排序方式: 共有373条查询结果,搜索用时 31 毫秒
121.
One-pot synthesis of well dispersed, size-controlled gold nanoparticles with the average size of 10–15 nm and luminescent gold nanoclusters with average size of 1.7–2.0 nm were successfully achieved by thermal decomposition of gold organometallic precursor CH3AuPPh3 in the presence of thiol surfactants in o-xylene. Only difference between the preparations of two types of Au nanoparticles is the amount of thiol surfactant employed. The mechanistic study of formation of gold nanoparticles was carried out by analyzing the samples at different reaction time intervals and revealed that two-staged growth process was involved. The nanoclusters showed strong red emission with the maximum intensity at about 600 nm. The maximum room temperature photoluminescence quantum yield was measured as 1.2%. The catalytic ability of the Au nanoclusters to promote Suzuki–Miyaura coupling involving the C–C bond formation was also investigated.  相似文献   
122.
A new D-A-π-A-D molecule (Spiro-BTA) containing two 2,1,3-benzothiadiazole (BTA) as the acceptor (A) and triphenylamine as the donor (D) bridged by a spirobifluorene moiety has been synthesized. The novel D-A molecule shows intense red emission (612 nm) with a high PL quantum yield (Φ(PL) = 0.51) in a solid film. A cyclic voltammogram of Spiro-BTA in 1:2 MeCN:benzene/0.1 M Bu(4)NPF(6) shows two reversible oxidation waves and one reversible reduction wave. The first oxidation wave and reduction wave were assigned as two successive electron transfer peaks separated by ~50 mV related to the oxidation of the two noninteracting donors and the reduction of the two noninteracting acceptors, respectively. Electrogenerated chemiluminescence (ECL) of Spiro-BTA upon cyclic oxidation and reduction in MeCN:benzene 1:2 shows a very bright and stable red emission that could be seen in a well-lit room. Using a reprecipitation method, well-dispersed organic nanoparticles (NPs) of the Spiro-BTA were prepared in aqueous solution. The nanoparticles were analyzed by dynamic light scattering (DLS) and scanning electron microscopy (SEM), yielding a NP size (without surfactant) of 130 ± 20 nm, while with surfactant, 100 ± 20 nm. Bathochromic shifts of absorption spectra (~16 ± 2 nm), as compared to that of the dissolved Spiro-BTA in THF, were observed for both NPs in water and as a thin film. While blue shifts (14 ± 2 nm) were observed for the photoluminescence (PL). The PL intensity of the Spiro-BTA nanoparticles was slightly enhanced (Φ(PL) of nanoparticles in water = 48%) over that of the dissolved Spiro-BTA in THF. The ECL of the organic Spiro-BTA nanoparticles in aqueous solution could be observed upon oxidation with tri-n-propylamine as a coreactant.  相似文献   
123.
In this study, an effect of different concentrations of urea on the morphology of cobalt oxide (Co3O4) nanostructures was investigated. The Co3O4 nanostructures are fabricated on gold coated glass substrate by the hydrothermal method. The morphological and structural characterization was performed by scanning electron microscopy, and X‐ray diffraction techniques. The Co3O4 nanostructures exhibit morphology of flowers‐like and have comprised on nanowires due to the increasing amount of urea. The nanostructures were highly dense on the substrate and possess a good crystalline quality. The Co3O4 nanostructures were successfully used for the development of a sensitive glucose biosensor. The presented glucose biosensor detected a wide range of glucose concentrations from 1×10?6 M to 1×10?2 M with sensitivity of a ?56.85 mV/decade and indicated a fast response time of less than 10 s. This performance could be attributed to the heterogeneous catalysis effect at glucose oxidase enzyme, nanoflowers, and nanowires interfaces, which have enhanced the electron transfer process on the electrode surface. Moreover, the reproducibility, repeatability, stability and selectivity were also investigated. All the obtained results indicate the potential use of the developed glucose sensor for monitoring of glucose concentrations at drugs, human serum and food industry related samples.  相似文献   
124.
Diblock copolymers composed of monomers of tert-butyl acrylate and a side-chain azobenzenecontaining monomer, 4-[(E)-(4-nitrophenyl)diazenyl]phenyl prop-2-enoate were synthesized using atom transfer radical polymerization technique. Experimental strategy involved synthesis of block of tert-butyl acrylate macroinitiator followed by addition of second block of azobenzene-containing monomer to prepare desired block-copolymer. GPC analysis indicated narrow molecular weight distributions with degree of polymerization found in good agreement with targeted value. Prepared block copolymers of varying chain lengths can potentially be used to obtain morphologies that can find useful applications for biomedical applications including intriguing photo-switchable drug delivery systems.  相似文献   
125.
The interface between nematic liquid crystal, 4-cyano-4′-pentylbiphenyl (5CB), and water in a transmission electron microscopy (TEM) grid cell coated with QP4VP-b-LCP (quaternized poly(4-vinylpyridine) (QP4VP) and poly(4-cyanobiphenyl-4′-oxyundecylacrylate) (LCP)) was examined for protein and DNA detection. QP4VP-b-LCP was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Quaternization of P4VP with iodomethane (CH3I) made it a strong cationic polyelectrolyte and allowed QP4VP-b-LCP to form complexes with oppositely charged biological species. Several proteins, such as bovine serum albumin (BSA), hemoglobin (Hb), α chymotrypsinogen-A (ChTg), and lysozyme (LYZ), were tested for nonspecific protein detection. By injecting the protein solutions into the TEM grid cell, the initial homeotropic orientation of the TEM grid cell changed to a planar orientation above their isoelectric points (PIs) due to electrostatic interactions between QP4VP (+charge) and proteins (?charge), which did not occur below the PIs of the tested proteins. Their minimum concentrations at which the homeotropic to planar configurational change (H-P change) occurred were 0.01, 0.02, 0.03, and 0.04 wt.% for BSA, ChTg, Hb, and LYZ, respectively. One of the strong anionic polyelectrolytes, deoxyribonucleic acid (DNA) (due to the phosphate deoxyribose backbone) was also tested. A H-P change was observed with as little as 0.0013 wt.% salmon sperm DNA regardless of the pH of the cell. A H-P change occurred in 5CB and was observed by polarized optical microscopy. This simple and inexpensive setup for nonspecific biomaterial detection provides the basic idea for developing effective selective biosensors by introducing specific binding groups, such as the aptamer and antibody.  相似文献   
126.
In this paper we study the homology of a random ?ech complex generated by a homogeneous Poisson process in a compact Riemannian manifold M. In particular, we focus on the phase transition for “homological connectivity” where the homology of the complex becomes isomorphic to that of M. The results presented in this paper are an important generalization of 7 , from the flat torus to general compact Riemannian manifolds. In addition to proving the statements related to homological connectivity, the methods we develop in this paper can be used as a framework for translating results for random geometric graphs and complexes from the Euclidean setting into the more general Riemannian one.  相似文献   
127.
Proteomic characterization of human whole saliva for the identification of disease-specific biomarkers is guaranteed to be an easy-to-use and powerful diagnostic tool for defining the onset, progression and prognosis of human systemic diseases and, in particular, oral diseases. The high abundance of proteins, mainly alpha amylase, hampers the detection of low abundant proteins appearing in the disease state and therefore should be removed. In the present study a 2-DE was used to analyze human whole saliva following the removal of alpha amylase by affinity adsorption to potato starch. After alpha amylase removal whole saliva was analyzed by SDS-PAGE showing at least sixfold removal efficiency and by an alpha amylase activity assay showing 97% reduced activity. MS identification of the captured alpha amylase after elution demonstrated specific removal; 2-DE analysis showed the selective removal of alpha amylase and consequently increased gel resolution. MS identification of protein spots in the 60 kDa area revealed 15 proteins, which were masked before alpha amylase removal. In conclusion, treatment of human whole saliva with an alpha amylase removal device increases gel resolution and enables a higher protein sample for analysis.  相似文献   
128.
A new carrier matrix for nanoemulsion drug delivery was synthesized from glycine as the raw material, using mesoporous/microporous electron rich carbon-silica composite surface (MAC(800)). MAC(800) was prepared from rice husk in two-stage carbonization. The surface area, pore volume, and pore size distribution of MAC(800) were measured, using nitrogen adsorption isotherms at 77K. The unpaired electron density of MAC(800) was measured in electron spin resonance spectroscopy (ESR), using TEMPOL (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) as the reference spin probe. Glycine was converted into ketene at the surface of MAC(800), which further underwent radical polymerization to form a low molecular weight ketene polymer (LMKP) of ester structure. The structure and the properties of LMKP were confirmed through (13)C, (1)H and DEPT nuclear magnetic resonance (NMR) spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and size exclusion chromatography (SEC). The two hydrophilic drugs namely ciprofloxacin hydrochloride (CPH) and gentamicin sulphate (GS) were chosen for the nanoemulsion preparation and characterization. They were characterized for morphology, interaction of drugs with the polymer and their crystallinity, using HR-TEM, DSC and XRD, respectively. The encapsulation efficiency of the LMKP towards the drugs ciprofloxacin hydrochloride and gentamicin sulphate were 26% and 12%, respectively. The dissolution studies of the nanoemulsion were carried out for the pH 6.5, 7.4 and 8.0. The cytocompatibility studies were done for LMKP as well as nanoemulsion using Hep2 epithelial cells.  相似文献   
129.
130.
Lithium ion batteries which are an energy storage system have increasing attention owing to suitability and advantages for many applications. Although it has ideal specifications, the capacity properties still have to be developed. In this study, the electrical conductivity of the anode was increased by using a conductive polymer binder and the active material content of the anode was also enhanced without adding carbon additives. Silicon based anodes were manufactured by using poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) and poly(3,4-ethylenedioxythiophene)/polythiophenesulfonyl chloride (PEDOT:PTS) conductive polymer binders. Si/PEDOT:PTS anode showed about 2000 mAh/g specific capacities after 60 cycles with decreasing impedance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号