首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3591篇
  免费   165篇
  国内免费   18篇
化学   2708篇
晶体学   30篇
力学   95篇
综合类   1篇
数学   493篇
物理学   447篇
  2023年   39篇
  2022年   38篇
  2021年   56篇
  2020年   86篇
  2019年   73篇
  2018年   44篇
  2017年   40篇
  2016年   136篇
  2015年   125篇
  2014年   140篇
  2013年   181篇
  2012年   234篇
  2011年   278篇
  2010年   165篇
  2009年   134篇
  2008年   216篇
  2007年   219篇
  2006年   209篇
  2005年   183篇
  2004年   159篇
  2003年   121篇
  2002年   139篇
  2001年   78篇
  2000年   73篇
  1999年   64篇
  1998年   45篇
  1997年   31篇
  1996年   30篇
  1995年   40篇
  1994年   35篇
  1993年   27篇
  1992年   24篇
  1991年   39篇
  1990年   32篇
  1989年   27篇
  1988年   6篇
  1987年   16篇
  1986年   6篇
  1985年   13篇
  1984年   12篇
  1983年   13篇
  1982年   9篇
  1980年   18篇
  1979年   10篇
  1978年   9篇
  1977年   23篇
  1976年   8篇
  1975年   10篇
  1974年   9篇
  1972年   8篇
排序方式: 共有3774条查询结果,搜索用时 15 毫秒
51.
The enantiomers of 3,3,3',3'-tetramethyl-1,1'-spirobi[3 H,2,1]benzoxaselenole have been separated on a chiral preparative chromatographic column. The experimental vibrational circular dichroism (VCD) spectra have been obtained for both enantiomers in CH(2)Cl(2). The theoretical VCD spectra have been obtained by means of density functional theoretical calculations with the B3 LYP density functional. From a comparison of experimental and theoretical VCD spectra, the absolute configuration of an enantiomer with positive specific rotation in CH(2)Cl(2) at 589 nm is determined to be R. This conclusion has been verified by comparing results of experimental optical rotatory dispersion (ORD) and electronic circular dichroism (ECD) to predictions of the same properties using the B3 LYP functional for the title compound.  相似文献   
52.
Many photoactive metal complexes can act as electron donors or acceptors upon photoexcitation, but hydrogen atom transfer (HAT) reactivity is rare. We discovered that a typical representative of a widely used class of iridium hydride complexes acts as an H-atom donor to unactivated olefins upon irradiation at 470 nm in the presence of tertiary alkyl amines as sacrificial electron and proton sources. The catalytic hydrogenation of simple olefins served as a test ground to establish this new photo-reactivity of iridium hydrides. Substrates that are very difficult to activate by photoinduced electron transfer were readily hydrogenated, and structure–reactivity relationships established with 12 different olefins are in line with typical HAT reactivity, reflecting the relative stabilities of radical intermediates formed by HAT. Radical clock, H/D isotope labeling, and transient absorption experiments provide further mechanistic insight and corroborate the interpretation of the overall reactivity in terms of photo-triggered hydrogen atom transfer (photo-HAT). The catalytically active species is identified as an Ir(ii) hydride with an IrII–H bond dissociation free energy around 44 kcal mol−1, which is formed after reductive 3MLCT excited-state quenching of the corresponding Ir(iii) hydride, i.e. the actual HAT step occurs on the ground-state potential energy surface. The photo-HAT reactivity presented here represents a conceptually novel approach to photocatalysis with metal complexes, which is fundamentally different from the many prior studies relying on photoinduced electron transfer.

Upon irradiation with visible light, an iridium hydride complex undergoes hydrogen atom transfer (HAT) to unactivated olefins in presence of a sacrificial electron donor and a proton source.  相似文献   
53.
The reaction of ethylenediamine with an equivalent mixture of diversely substituted 3-acyltetramic acids leads to Z/Z, Z/E, E/Z and E/E isomers. The E/Z isomerisation is slow in the NMR time scale of the 1H and 13C chemical shifts; therefore at room temperature and in deuterochloroform all isomers of the new synthesized asymmetric compounds N,N′-ethylene-(1-ethyl-5,5-dimethyl-1′,5′,5′-trimethyl-3,3′-acetyltetramic acid) a, N,N′-ethylene-(5,5-dimethyl-1′,5′,5′-trimethyl-3,3′-acetyltetramic acid) b and, N,N′-ethylene-(1,5,5-trimethyl-1′,5′,5′-trimethyl-3-acetyl-3′-formyl-tetramic acid) c could be found in the corresponding spectra. To assign the 13C NMR signals we used two-dimensional 13C-1H one-bond (HMQC) and 13C-1H multibond (HMBC) correlated spectroscopy and the empirical rule that CO signals involved in hydrogen bonds are shifted to a lower field. The relative stability of isomers depending on substitution pattern could be estimated from the composition of the equilibria. b crystallizes as Z/Z isomer from ethanolic solution. The X-ray structural analysis of b has shown two CH-O hydrogen bonds. Received: 31 May 1996 / Revised: 26 June 1996 / Accepted: 1 July 1996  相似文献   
54.
A systematic determination of electronic coupling matrix elements in U-shaped molecules is demonstrated. The unique architecture of these systems allows for the determination of the electronic coupling through a pendant molecular moiety that resides between the donor and acceptor groups; this moiety quantifies the efficiency of electron tunneling through nonbonded contacts. Experimental electron-transfer rate constants and reaction free energies are used to calibrate a molecular-based model that describes the solvation energy. This approach makes it possible to experimentally determine electronic couplings and compare them with computational values.  相似文献   
55.
UT-7 and UT-8 (University of Toronto, structure numbers 7 and 8) are two novel aluminophosphate materials prepared under non-aqueous conditions. Their structures, extended in one and two dimensions, respectively, have been solved by single-crystal X-ray diffraction and characterized by a variety of methods including powder X-ray diffraction (PXRD), insitu high-temperature PXRD, thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), and scanning electron microscopy (SEM). UT-7 ([Al(3)P(5)O(20)H](5)(-)[C(7)H(13)NH(3)(+)](5), triclinic space group P&onemacr;, Z = 2, a = 10.118(3) ?, b = 15.691(4) ?, c = 18.117(3) ?, alpha = 72.91(2) degrees, beta = 85.18(2) degrees, gamma = 79.49(2) degrees ) is built of polymeric one-dimensional chain units, hydrogen-bonded into anionic layers that are charge-compensated by interlamellar cycloheptylammonium cations. UT-7 is isostructural to our previously discovered UT-3 chain structure, isolated in the analogous cyclopentylamine system. UT-8 ([Al(3)P(4)O(16)](3-)[C(4)H(7)NH(3)(+)](2)[C(5)H(10)NH(2)(+)], monoclinic space group P2(1), Z = 2, a = 8.993(4) ?, b = 14.884(8) ?, c = 9.799(9) ?, beta = 103.52(3) degrees ) is a two-dimensional net isostructural to several previously reported [Al(3)P(4)O(16)](3)(-) layers. The interlayer region of UT-8 is occupied by two different cyclic organic amine species, namely piperidinium and cyclobutylammonium. To our knowledge, this is the first report of the crystal structure of an aluminophosphate material containing cyclobutylammonium or a mixture of cyclic amines. Interestingly, UT-7 is observed to thermally transform in the solid state to an as yet unknown layered material that can be independently synthesized in a similar synthetic system. In the same way as UT-3 transforms to the UT-4 layered phase, we believe UT-7 transforms to a layered material by means of a chain to layer transformation.  相似文献   
56.
The ring-closing metathesis reactions (RCM) of six standard diene substrates leading to five-, six-, or seven-membered carbo- or heterocycles were investigated under controlled microwave irradiation. RCM protocols were performed with standard Grubbs type II and a cationic ruthenium allenylidene catalyst in neat and ionic liquid-doped methylene chloride under sealed vessel conditions. Very rapid conversions (15 s) were achieved utilizing 0.5 mol % Grubbs II catalyst under microwave conditions. Careful comparison studies indicate that the observed rate enhancements are not the result of a nonthermal microwave effect.  相似文献   
57.
58.
59.
Mesoporous silica thin films were shown to be an appropriate matrix for immobilization of discrete electroactive moieties, yielding uniform transparent thin film electrodes with defined texture and enhanced electrochemical activity. The mesoporous silica films prepared on conducting FTO-coated glass substrate were postsynthetically functionalized. Alkoxysilanes were used as precursors for subsequent grafting via ionic or covalent bonds of representative electroactive species, such as polyoxometalate PMo12O(40)3-, hexacyanoferrate(III), and ferrocene. The electrochemically active concentration within the silica-based composite electrodes achieves 90, 260, and 60 micromol cm(-3) for polyoxometalate, hexacyanoferrate(III), and ferrocene, respectively. The amount of molecules involved in the charge-transfer sequence is proportional to the film thickness and comparable to the total amount of embedded guests. Thus, eventually the whole bulk volume of the modified silica films is electrochemically accessible. Immobilization in the chemically modified silica matrix alters the redox potential of the electroactive molecules. Electron exchange between the adjacent redox centers (electron hopping) is proposed as a possible charge propagation pathway through the insulating silica matrix, which is supported by the fact that the high charge uptake is observed also for the hybrid electrodes with the covalently anchored redox guests.  相似文献   
60.
The compounds Ce(10)Cl(4)Ga(5) and Ln(3)ClGa(4) (Ln = La, Ce) were synthesized from stoichiometric mixtures of Ln, LnCl(3), and Ga under Ar atmosphere in sealed Ta ampules at 910-1020 degrees C for 25-26 days. Ce(10)Cl(4)Ga(5) is isostructural to La(10)Cl(4)Ga(5) (space group I4/mcm, No. 140) with lattice constants a = 7.9546(11) A, c = 31.793(6) A. Ln(3)ClGa(4) represents a new structural type, also in the space group I4/mcm, with a = 8.1955(8) and 8.1123(11) A, c = 11.363(2) and 11.229(2) A, respectively, for Ln = La and Ce. Ce(10)Cl(4)Ga(5) features building blocks of Ga-centered Ce(6) trigonal prisms and distinctive two-dimensional intermetallic CuAl(2) and U(3)Si(2) type nets. Its electronic structure falls within the realm of reduced rare-earth halides. Ln(3)ClGa(4) also contains the intermetallic CuAl(2) type nets, but the interstitials are inverted: The building blocks are Cl-centered Ln(6) octahedra. Its electronic structure is characterized by strong peripheral Ln-Ga bonding stabilizing the Ln(6)Cl octahedron which normally would have its Ln-Ln antibonding orbitals filled with electrons from interstitials beyond chalcogen. Magnetic susceptibility and conductivity measurements confirm the metallic nature of all three compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号