首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   1篇
化学   5篇
力学   1篇
数学   4篇
物理学   30篇
  2022年   3篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   20篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
排序方式: 共有40条查询结果,搜索用时 16 毫秒
11.
ABSTRACT

For a comprehensive understanding of the PVA/CdS nanocomposite properties, it is essential to select the suitable method for their preparation as well as elucidate the interfacial interactions, which still need support. CdS nanoparticles have been prepared by thermolysis method under the flow of nitrogen. Rietveld refinement of x-ray data shows that all the CdS samples have both cubic and hexagonal structures. Then PVA/CdS films were prepared by ex-situ technique. Samples from PVA/CdS nanocomposite have been irradiated with gamma doses in the range 10–120?kGy. The implanting of CdS NPs into PVA matrix was confirmed by XRD hand in hand with UV–vis and FTIR spectroscopic techniques. UV/VIS absorption spectra confirm the formation of hybridized film CdS/PVA nanocomposite with a refractive index in the range of 1.32–1.48 (at 500?nm). UV/VIS measurements were also used in calculating different optical parameters such as refractive index, extinction coefficient and optical band gap energy. Additionally, Tauc’s relation was used to determine the type of electronic transition. It is found that the gamma irradiation in the dose range 30-90?kGy led to a more compact structure of PVA/CdS nanocomposite and causes proper dispersion of CdS nanoparticles in the PVA matrix. This led to the formation of coordination reaction between OH of PVA and CdS nanoparticles, resulted in an increase in refractive index and the amorphous phase. Also, the gamma irradiation reduces the optical energy gap from 4.53 to 2.19?eV, and accompanied with an increase in the Urbach energy from 2.28 to 4.46?eV, at that dose range which could be attributed to the increase in structural disorder of the irradiated PVA/CdS nanocomposites due to crosslinking. Further, the color intensity ΔE, which is the color difference between the non-irradiated sample and the irradiated ones, was increased, from 0 to 10.8, with increasing the gamma dose, convoyed by an increase in the red and yellow color components.  相似文献   
12.
ABSTRACT

Samples from sheets of the polymeric material Makrofol LS 1–1 have been exposed to gamma radiation in the dose range 10–250?kGy. The modifications induced in Makrofol samples due to gamma irradiation have been studied through different characterization techniques such as intrinsic viscosity as a measure of the average molecular mass, Fourier Transform Infrared spectroscopy FTIR, refractive index and color difference studies. The results indicate that the crosslinking dominates at the dose range 50–250?kGy. The crosslinking reported by viscosity measurements is supported by the trend of the function groups present in the sample with the gamma dose. Also, the increase in intrinsic viscosity indicating an increase in the average molecular mass was associated with an increase in the refractive index. Additionally, the non-irradiated Makrofol samples showed significant color sensitivity towards gamma irradiation. The color intensity ΔE, which is the color difference between the non-irradiated sample and those irradiated with different gamma doses, increased (0–5.56) with increasing the dose up to 250?kGy, convoyed by an increase in the red and yellow color components.  相似文献   
13.

Dielectric constant, dielectric loss and AC conductivity were measured, in the frequency range 100 Hz to 5 MHz in chlorinated poly (vinyl chloride) (CPVC) before and after exposure to gamma irradiation at doses between 5.0 KGy and 50.0 KGy. The frequency dependencies of ε′, ε″ and σAC at 30 °C were investigated. A relaxation peak in the dielectric loss and a corresponding step in the dielectric constant have been observed, in the frequency ranges 103 Hz to 104 Hz. The dielectric constant ε′, dielectric loss ε″ and AC conductivity σAC are also found to increase at heating up to 100 °C. In addition the effect of gamma irradiation on the frequency dependencies of ε′, ε″ and σAC was measured at room temperature. The gamma irradiation leads to an increase in the efficiency of soft segments. Furthermore, the DC electrical conductivity of both the irradiated and non-irradiated samples was investigated. The induced electrical conductivity and the activation energy were measured, at various temperatures, as a function of gamma dose. It was found that the gamma radiation has a definite effect on the DC conductivity of the CPVC polymer.  相似文献   
14.
The effects of 28 GeV 56Fe and 13.72 GeV 28Si ion irradiation on the structural properties of two types of Bayfol, namely DPF 5023 and CR 1–4 polycarbonates, have been investigated. It is worth mentioning that this report is almost the first one dealing with the topic of material changes in such a high energy range. Samples from each type of Bayfol were classified into two groups. The first group has been exposed to Fe ion fluences at levels between 2000 and 8000 ion/cm2. The second group has been exposed to Si ions with similar fluences. The total energy deposited is between 27.44 and 224 E12 eV. The modifications induced in Bayfol samples due to ion irradiation have been studied using X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy. The results indicate that the Fe ion irradiation causes crosslinking in Bayfol DPF 5023, reflected as a decrease in the ordering character. Also, the tendency of Bayfol CR 1–4 to crosslinking due to Fe ion irradiation is lower than that of Bayfol DPF 5023. On the other hand, the Si ion irradiation causes mainly chain scission at the carbonate site of both types of Bayfol associated with the formation of hydroxyl group.  相似文献   
15.
Samples from polycarbonate/poly (butylene terephthalate) (PC/PBT) blends film have been irradiated using different fluences (1?×?1015– 5?×?1017 H+/cm2) of 1?MeV protons at the University of Surrey Ion Beam Center, UK. The structural modi?cations in the proton irradiated samples have been studied as a function of fluence using different characterization techniques such as X-ray diffraction and UV spectroscopy. The results indicate that the proton irradiation reduces the optical energy gap that could be attributed to the increase in structural disorder of the irradiated samples due to crosslinking. Furthermore, the color intensity ΔE, which is the color difference between the non-irradiated sample and those irradiated with different proton fluences, increased with increasing the proton fluence up to 5?×?1017 H+/cm2, convoyed by an increase in the red and yellow color components. In addition, the resultant effect of proton irradiation on the thermal properties of the PC/PBT samples has been investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). It is found that the PC/PBT decomposes in one weight loss stage. Also, the variation of transition temperatures with proton fluence has been determined using DSC. The PC/PBT thermograms were characterized by the appearance of two endothermic peaks due to the glass transition and melting temperatures. The melting temperature of the polymer, Tm, was investigated to probe the crystalline domains of the polymer, since the proton irradiation destroys the crystalline structure so reducing the melting temperature.  相似文献   
16.
Samples from sheets of the polymeric material Makrofol DE 1-1 CC have been exposed to neutrons of incident energy in the range of 0.8–19.2 MeV. The modifications induced in Makrofol samples due to neutron irradiation have been studied through different characterization techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, intrinsic viscosity, refractive index and color difference studies. Infrared spectroscopy indicated that cross-linking is the dominant mechanism in the energy range of 2.3–19.2 MeV. The cross-linking reported by FTIR spectroscopy destroyed the degree of ordering in the Makrofol samples, as revealed by the XRD technique. Also, this cross-linking led to an increase in the values of intrinsic viscosity from 0.41 to 0.68 at 28 °C, indicating an increase in the average molecular mass, associated with an increase in the refractive index. Additionally, the non-irradiated Makrofol samples showed significant color sensitivity toward neutron irradiation. The sensitivity toward neutron irradiation can be seen by the change in the blue color component of the non-irradiated Makrofol film to yellow after the samples are exposed to neutrons up to 19.2 MeV. This is accompanied by a net increase in the darkness of the samples.  相似文献   
17.
A study of the effect of gamma and laser irradiation on the color changes of polyallyl diglycol (CR-39) solid-state nuclear track detector was performed. CR-39 detector samples were classified into two main groups. The first group was irradiated with gamma doses at levels between 20 and 300 kGy, whereas the second group was exposed to infrared laser radiation with energy fluences at levels between 0.71 and 8.53 J/cm2. The transmission of these samples in the wavelength range 300–2500 nm, as well as any color changes, was studied. Using the transmission data, both the tristimulus and the coordinate values of the Commission Internationale de l'Eclairage (CIE) LAB were calculated. Also, the color differences between the non-irradiated samples and those irradiated with different gamma or laser doses were calculated. The results indicate that the CR-39 detector acquires color changes under gamma or laser irradiation, but it has more response to color changes by gamma irradiation. In addition, structural property studies using infrared spectroscopy were performed. The results indicate that the irradiation of a CR-39 detector with gamma or laser radiations causes the cleavage of the carbonate linkage that can be attributed to the ?H abstraction from the backbone of the polymer, associated with the formation of CO2 and ?OH with varying intensities.  相似文献   
18.
This work describes control-theoretic methods for inducing a band gap-like behavior in elastic monatomic lattices. The dynamics of the system under consideration are derived in detail. Open-loop pre-filtering techniques, in the form of Posicast and user-selected time delay filters, are then utilized to eliminate specific frequency contents from the response of the multi-degree of freedom spring-mass chain. The input shaping approach is used to synthesize one or more band gaps in a homogenous lattice that can be designed to resemble Bragg-scattering in phononic crystals, as well as local resonance effects in acoustic metamaterials. The presence of the synthesized band gaps in the lattice’s dispersion behavior is validated using a spatiotemporal Fourier transform of the system’s impulse response as well as the frequency response of the end-to-end transfer function. Finally, an analysis of the control effort required to cancel the targeted system poles is carried out.  相似文献   
19.
20.
Poly(vinyl alcohol) (PVA) polymer was prepared using the casting technique. The obtained PVA thin films have been irradiated with electron beam doses ranging from 20 to 300 kGy. The resultant effect of electron beam irradiation on the structural properties of PVA has been investigated using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), while the thermal properties have been investigated using thermo-gravimetric analysis and differential thermal analysis (DTA). The onset temperature of decomposition T 0 and activation energy of thermal decomposition E a were calculated, results indicate that the PVA thin film decomposes in one main weight loss stage. Also, the electron beam irradiation in dose range 95–210 kGy led to a more compact structure of the PVA polymer, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. The variation of transition temperatures with electron beam dose has been determined using DTA. The PVA thermograms were characterized by the appearance of an endothermic peak due to melting. In addition, the transmission of the PVA samples and any color changes were studied. The color intensity Δ E was greatly increased with increasing electron beam dose, and was accompanied by a significant increase in the blue color component.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号