首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2201篇
  免费   83篇
  国内免费   8篇
化学   1411篇
晶体学   58篇
力学   60篇
数学   200篇
物理学   563篇
  2023年   27篇
  2022年   46篇
  2021年   42篇
  2020年   57篇
  2019年   55篇
  2018年   33篇
  2017年   33篇
  2016年   70篇
  2015年   57篇
  2014年   82篇
  2013年   174篇
  2012年   129篇
  2011年   168篇
  2010年   88篇
  2009年   83篇
  2008年   127篇
  2007年   141篇
  2006年   84篇
  2005年   78篇
  2004年   63篇
  2003年   40篇
  2002年   33篇
  2001年   30篇
  2000年   18篇
  1999年   10篇
  1998年   14篇
  1997年   11篇
  1996年   20篇
  1995年   22篇
  1994年   24篇
  1993年   29篇
  1992年   20篇
  1991年   8篇
  1990年   11篇
  1989年   12篇
  1988年   19篇
  1987年   17篇
  1986年   20篇
  1985年   21篇
  1984年   21篇
  1983年   24篇
  1982年   20篇
  1981年   21篇
  1980年   19篇
  1979年   17篇
  1978年   23篇
  1977年   13篇
  1976年   19篇
  1974年   16篇
  1973年   13篇
排序方式: 共有2292条查询结果,搜索用时 31 毫秒
101.
Integral membrane proteins play central roles in controlling the flow of information and molecules across membranes. Our understanding of membrane protein structures and functions, however, is seriously limited, mainly due to difficulties in handling and analysing these proteins in aqueous solution. The use of a detergent or other amphipathic agents is required to overcome the intrinsic incompatibility between the large lipophilic surfaces displayed by the membrane proteins in their native forms and the polar solvent molecules. Here, we introduce new tripod amphiphiles displaying favourable behaviours toward several membrane protein systems, leading to an enhanced protein solubilisation and stabilisation compared to both conventional detergents and previously described tripod amphiphiles.  相似文献   
102.
Titanium dioxide (TiO2) thin films were deposited onto p‐Si substrates held at room temperature by reactive Direct Current (DC) magnetron sputtering at various sputter powers in the range 80–200 W. The as‐deposited TiO2 films were annealed at a temperature of 1023 K. The post‐annealed films were characterized for crystallographic structure, chemical binding configuration, surface morphology and optical absorption. The electrical and dielectric properties of Al/TiO2/p‐Si structure were determined from the capacitance–voltage and current–voltage characteristics. X‐ray diffraction studies confirmed that the as‐deposited films were amorphous in nature. After post‐annealing at 1023 K, the films formed at lower powers exhibited anatase phase, where as those deposited at sputter powers > 160 W showed the mixed anatase and rutile phases of TiO2. The surface morphology of the films varied significantly with the increase of sputter power. The electrical and dielectric properties on the air‐annealed Al/TiO2/p‐Si structures were studied. The effect of sputter power on the electrical and dielectric characteristics of the structure of Al/TiO2/p‐Si (metal‐insulator‐semiconductor) was systematically investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
103.
Metal complexes of multi-porphyrins and multi-corroles are unique systems that display a host of extremely interesting properties. Availability of free meso and β positions allow formation of different types of directly linked bis-porphyrins giving rise to intriguing optical and electronic properties. While the fields of metalloporphyrin and corroles monomer have seen exponential growth in the last decades, the chemistry of metal complexes of bis-porphyrins and bis-corroles remain rather underexplored. Therefore, the impact of covalent linkages on the optical, electronic, (spectro)electrochemical, magnetic and electrocatalytic activities of metal complexes of bis-porphyrins and -corroles has been summarized in this review article. This article shows that despite the (still) somewhat difficult synthetic access to these molecules, their extremely exciting properties do make a strong case for pursuing research on these classes of compounds.  相似文献   
104.
MXenes are recently developed two-dimensional layered materials composed of early transition metal carbides and/or nitrides that provide unique characteristics for biosensor applications. This review presents the recent progress made on the usage and applications of MXenes in the field of electrochemical biosensors, including microfluidic biosensors and wearable microfluidic biosensors, and highlights the challenges with possible solutions and future needs. The multilayered configuration and high conductivity make these materials as an immobilization matrix for the biomolecule immobilization with activity retention and to be explored in the fabrication of electrochemical sensors, respectively. First, how the MXene nanocomposite as an electrode modifier affects the sensing performance of the electrochemical biosensors based on enzymes, aptamer/DNA, and immunoassays is well described. Second, recent developments in MXene nanocomposites as wearable biosensing platforms for the biomolecule detection are highlighted. This review pointed out the future concerns and directions for the use of MXene nanocomposites to fabricate advanced electrochemical biosensors with high sensitivity and selectivity. Specifically, possibilities for developing microfluidic electrochemical sensors and wearable electrochemical microfluidic sensors with integrated biomolecule detection are emphasized.  相似文献   
105.
Immunomodulation of the tumor microenvironment is emerging as an important area of research for the treatment of cancer patients. Several synthetic and natural agents are being investigated for their ability to enhance the immunogenic responses of immune cells present in the tumor microenvironment to impede tumor cell growth and dissemination. Among them, resveratrol, a stilbenoid found in red grapes and many other natural sources, has been studied extensively. Importantly, resveratrol has been shown to possess activity against various human diseases, including cancer. Mechanistically, resveratrol has been shown to regulate an array of signaling pathways and processes involving oxidative stress, inflammation, apoptosis, and several anticancer effects. Furthermore, recent research suggests that resveratrol can regulate various cellular signaling events including immune cell regulation, cytokines/chemokines secretion, and the expression of several other immune-related genes. In this review, we have summarized recent findings on resveratrol’s effects on immune regulatory cells and associated signaling in various cancer types. Numerous immunomodulatory effects of resveratrol suggest it may be useful in combination with other cancer therapies including immunotherapy for effective cancer management.  相似文献   
106.
We report the existence of broad and weakly asymmetric features in the high-energy (G) Raman modes of freely suspended metallic carbon nanotubes of defined chiral index. A significant variation in peak width (from 12 cm(-1) to 110 cm(-1)) is observed as a function of the nanotube's chiral structure. When the nanotubes are electrostatically gated, the peak widths decrease. The broadness of the Raman features is understood as the consequence of coupling of the phonon to electron-hole pairs, the strength of which varies with the nanotube chiral index and the position of the Fermi energy.  相似文献   
107.
Slow light is demonstrated in liquid phase in an aqueous bacteriorhodopsin (bR) solution at room temperature. Group velocity as low as 3 m/s (all the way to c) is achieved by exploiting the photoisomerization property of bR for coherent population oscillations. Slow light in the liquid phase offers several advantages over solids or vapors for a variety of applications: (i) shorter lifetimes of the M state facilitate slow light at higher modulation frequencies, (ii) convection makes it possible to obtain large signal delays even at high input powers, and (iii) solution concentration is another convenient parameter to vary the signal delay over a wide range.  相似文献   
108.
109.
Carbene-based radicals are important for both fundamental and applied chemical research. Herein, extensive electrochemical investigations of nine different 1,2,3-triazolylidene selenium adducts are reported. It is found that the half-wave potentials of the first reduction of the selones correlate with their calculated LUMO levels and the LUMO levels of the corresponding triazolylidene-based mesoionic carbenes (MICs). Furthermore, unexpected quasi-reversibility of the reduction of two triazoline selones, exhibiting comparable reduction potentials, was discovered. Through UV/Vis/NIR and EPR spectroelectrochemical investigations supported by DFT calculations, the radical anion was unambiguously assigned to be triazoline centered. This electrochemical behavior was transferred to a triazolylidene-type MIC-gold phenyl complex resulting in a MIC-radical coordinated AuI species. Apart from UV-Vis-NIR and EPR spectroelectrochemical investigations of the reduction, the reduced gold-coordinated MIC radical complex was also formed in situ in the bulk through chemical reduction. This is the first report of a monodentate triazolylidene-based MIC ligand that can be reduced to its anion radical in a metal complex. The results presented here provide design principles for stabilizing radicals based on MICs.  相似文献   
110.
Novel photosynthetic reaction center model compounds of the type donor2–donor1–acceptor, composed of phenothiazine, BF2‐chelated dipyrromethene (BODIPY), and fullerene, respectively, have been newly synthesized using multistep synthetic methods. X‐ray structures of three of the phenothiazine‐BODIPY intermediate compounds have been solved to visualize the substitution effect caused by the phenothiazine on the BODIPY macrocycle. Optical absorption and emission, computational, and differential pulse voltammetry studies were systematically performed to establish the molecular integrity of the triads. The N‐substituted phenothiazine was found to be easier to oxidize by 60 mV compared to the C‐substituted analogue. The geometry and electronic structures were obtained by B3LYP/6‐31G(dp) calculations (for H, B, N, and O) and B3LYP/6‐31G(df) calculations (for S) in vacuum, followed by a single‐point calculation in benzonitrile utilizing the polarizable continuum model (PCM). The HOMO?1, HOMO, and LUMO were, respectively, on the BODIPY, phenothiazine and fullerene entities, which agreed well with the site of electron transfer determined from electrochemical studies. The energy‐level diagram deduced from these data helped in elucidating the mechanistic details of the photochemical events. Excitation of BODIPY resulted in ultrafast electron transfer to produce PTZ–BODIPY.+–C60.?; subsequent hole shift resulted in PTZ.+–BODIPY–C60.? charge‐separated species. The return of the charge‐separated species was found to be solvent dependent. In nonpolar solvents the PTZ.+–BODIPY–C60.? species populated the 3C60* prior to returning to the ground state, while in polar solvent no such process was observed due to relative positioning of the energy levels. The 1BODIPY* generated radical ion‐pair in these triads persisted for few nanoseconds due to electron transfer/hole‐shift mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号