首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   12篇
化学   123篇
晶体学   1篇
力学   3篇
数学   15篇
物理学   17篇
  2023年   3篇
  2022年   1篇
  2021年   5篇
  2020年   8篇
  2019年   2篇
  2017年   1篇
  2016年   7篇
  2015年   9篇
  2014年   6篇
  2013年   12篇
  2012年   13篇
  2011年   13篇
  2010年   9篇
  2009年   6篇
  2008年   11篇
  2007年   5篇
  2006年   11篇
  2005年   8篇
  2004年   7篇
  2003年   6篇
  2002年   4篇
  2001年   5篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有159条查询结果,搜索用时 234 毫秒
51.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.  相似文献   
52.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.  相似文献   
53.
54.
We report uranium(IV)‐carbene‐imido‐amide metalla‐allene complexes [U(BIPMTMS)(NCPh3)(NHCPh3)(M)] (BIPMTMS=C(PPh2NSiMe3)2; M=Li or K) that can be described as R2C=U=NR′ push–pull metalla‐allene units, as organometallic counterparts of the well‐known push–pull organic allenes. The solid‐state structures reveal that the R2C=U=NR′ units adopt highly unusual cis‐arrangements, which are also reproduced by gas‐phase theoretical studies conducted without the alkali metals to remove their potential structure‐directing roles. Computational studies confirm the double‐bond nature of the U=NR′ and U=CR2 interactions, the latter increasingly attenuated by potassium then lithium when compared to the hypothetical alkali‐metal‐free anion. Combined experimental and theoretical data show that the push–pull effect induced by the alkali metal cations and amide auxiliary gives a fundamental and tunable structural influence over the C=UIV=N units.  相似文献   
55.
56.
The fungal strain was isolated from a soil sample collected in Giza province, Egypt, and was identified as Aspergillus ochraceopetaliformis based on phenotypic and genotypic data. The ethyl acetate extract of the fungal strain exhibited promising activity levels against several pathogenic test organisms and through a series of 1H NMR guided chromatographic separations, a new α-pyrone-C-lyxofuranoside (1) along with four known compounds (2–5) were isolated. The planar structure of the new metabolite was elucidated by detailed analysis of its 1D/2D NMR and HRMS/IR/UV spectroscopic data, while the relative configuration of the sugar moiety was determined by a combined study of NOESY and coupling constants data, with the aid of theoretical calculations. The structures of the known compounds—isolated for the first time from A. ochraceopetaliformis—were established by comparison of their spectroscopic data with those in the literature. All isolated fungal metabolites were evaluated for their antibacterial and antifungal activities against six Gram-positive and Gram-negative bacteria as well as against three human pathogenic fungi.  相似文献   
57.
The “masked” terminal Zn sulfide, [K(2.2.2‐cryptand)][MeLZn(S)] ( 2 ) (MeL={(2,6‐iPr2C6H3)NC(Me)}2CH), was isolated via reaction of [MeLZnSCPh3] ( 1 ) with 2.3 equivalents of KC8 in THF, in the presence of 2.2.2‐cryptand, at ?78 °C. Complex 2 reacts readily with PhCCH and N2O to form [K(2.2.2‐cryptand)][MeLZn(SH)(CCPh)] ( 4 ) and [K(2.2.2‐cryptand)][MeLZn(SNNO)] ( 5 ), respectively, displaying both Brønsted and Lewis basicity. In addition, the electronic structure of 2 was examined computationally and compared with the previously reported Ni congener, [K(2.2.2‐cryptand)][tBuLNi(S)] (tBuL={(2,6‐iPr2C6H3)NC(tBu)}2CH).  相似文献   
58.
The development of nanoscale masking for particle deposition is exceedingly important to push the future of nanoelectronics beyond the current limits of lithography. We present the first example of ordered hexagonal covalent nanoporous structures deposited in extended arrays of near monolayer coverage across a Ag(111) surface. The networks were formed from the deposition of the reagents from a heated molybdenum crucible between 370 and 460 K under ultrahigh vacuum (UHV) onto a cleaned Ag(111) substrate and imaged using a scanning tunneling microscope (STM). Two surface covalent organic frameworks (SCOFs) are presented; the first is formed from the deposition of 1,4-benzenediboronic acid (BDBA) and its dehydration to form the boroxine-linked SCOF-1, the second is formed from the co-deposition of BDBA and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) to form a dioxaborole-linked SCOF-2 network. The networks were found to produce nanoporous structures of 15 A for SCOF-1 and 29 A for SCOF-2, which agreed with theoretical pore sizes determined from DFT calculations. Both SCOFs were found to have exceptional thermal stability, maintaining their structure until approximately 750 K, which was found to be the polymer degradation temperature from thermal gravimetric analysis (TGA).  相似文献   
59.
The tri-thorium cluster [{Th(η8-C8H8)(μ3-Cl)2}3{K(THF)2}2] (Nature 2021, 598 , 72–75) was reported to feature intriguing σ-aromatic bonding between the thorium atoms, a mode of metal–metal bonding unique in the actinide series. However, the presence of this bonding motif has since been challenged by others. Here, we computationally explore electron delocalisation in a molecular cluster fragment of [{Th(η8-C8H8)(μ3-Cl)2}3{K(THF)2}2] and examine its responses to an applied magnetic field using a variety of methods. We also discuss the importance of the choice of basis set for the Th atoms and issues regarding locating QTAIM bond critical points. When taken together, the computed data consistently suggest the presence of delocalised Th−Th bonding and Th3 σ-aromaticity.  相似文献   
60.
Treatment of M[N(SiMe3)2]3 (M = U, Pu (An); La, Ce (Ln)) with NH(EPPh2)2 and NH(EPiPr2)2 (E = S, Se), afforded the neutral complexes M[N(EPR2)2]3 (R = Ph, iPr). Tellurium donor complexes were synthesized by treatment of MI3(sol)4 (M = U, Pu; sol = py and M = La, Ce; sol = thf) with Na(tmeda)[N(TePiPr2)2]. The complexes have been structurally and spectroscopically characterized with concomitant computational modeling through density functional theory (DFT) calculations. The An-E bond lengths are shorter than the Ln-E bond lengths for metal ions of similar ionic radii, consistent with an increase in covalent interactions in the actinide bonding relative to the lanthanide bonding. In addition, the magnitude of the differences in the bonding is slightly greater with increasing softness of the chalcogen donor atom. The DFT calculations for the model systems correlate well with experimentally determined metrical parameters. They indicate that the enhanced covalency in the M-E bond as group 16 is descended arises mostly from increased metal d-orbital participation. Conversely, an increase in f-orbital participation is responsible for the enhancement of covalency in An-E bonds compared to Ln-E bonds. The fundamental and practical importance of such studies of the role of the valence d and f orbitals in the bonding of the f elements is emphasized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号