首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   585篇
  免费   9篇
  国内免费   4篇
化学   290篇
晶体学   2篇
力学   27篇
数学   85篇
物理学   194篇
  2022年   5篇
  2021年   6篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2016年   8篇
  2015年   15篇
  2014年   11篇
  2013年   26篇
  2012年   32篇
  2011年   23篇
  2010年   18篇
  2009年   20篇
  2008年   20篇
  2007年   22篇
  2006年   31篇
  2005年   22篇
  2004年   18篇
  2003年   14篇
  2002年   23篇
  2001年   12篇
  2000年   13篇
  1999年   8篇
  1998年   5篇
  1997年   8篇
  1996年   7篇
  1995年   12篇
  1994年   20篇
  1993年   21篇
  1992年   25篇
  1991年   6篇
  1990年   4篇
  1988年   7篇
  1987年   6篇
  1985年   8篇
  1984年   8篇
  1983年   10篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1978年   5篇
  1977年   5篇
  1976年   6篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
  1972年   5篇
  1968年   3篇
  1890年   2篇
  1888年   4篇
排序方式: 共有598条查询结果,搜索用时 0 毫秒
11.
12.
13.
14.
The chemical-physical basis of loading and release of K(+) and Na(+) ions in and out of the selectivity filter of the K(+) channel has been investigated using the B3LYP method of density functional theory. We have shown that the difference between binding free energies of K(+) and Na(+) to the cavity end of the filter is smaller than the difference between the K(+) and Na(+) solvation free energies. Thus, the loading of K(+) ions into the cavity end of the selectivity filter from the solution phase is suggested to be selective prior to the subsequent conduction process. It is shown that the extracellular end of the filter is only optimal for K(+) ions, because K(+) ions prefer the coordination environment of eight carbonyl oxygens. Na(+) ions do not fit into the extracellular end of the filter, since they prefer the coordination environment of six carbonyl oxygens. Overall, the results suggest that the rigid C(4) symmetric selectivity filter is specifically designed for conduction of K(+) ions.  相似文献   
15.
The Heck cross-coupling reaction is a well-established chemical tool for the synthesis of unsaturated compounds by formation of a new C-C bond. In this study, 1,3-diarylpropene derivatives, designed as structural analogues of stilbenoids and dihydrostilbenoids, were synthesised by the palladium-catalysed reactions of 2-amidoiodobenzene derivatives with either estragole or eugenol. The products were obtained with high (E) stereoselectivity but as two regioisomers. The ratios of isomers were found to be dependent on the nature of the allylbenzene partner and were rationalised by electronic effects exercising a determining influence in the β-hydride elimination step. In addition, the cytotoxic effects of all the Heck reaction products were evaluated against MCF-7 and MDA-MB-231 human breast cancer cells, with unpromising results. Among all, compound 7d exhibited weak cytotoxic activity towards MCF-7 cell lines with IC50 values of 47.92 µM in comparison with tamoxifen and was considered to have general toxicity (SI value < 2).  相似文献   
16.
17.
Temperature-programmed reaction spectroscopy (TPRS) and direct, isothermal reaction-rate measurements were employed to investigate the oxidation of CO on Pt(111) covered with high concentrations of atomic oxygen. The TPRS results show that oxygen atoms chemisorbed on Pt(111) at coverages just above 0.25 ML (monolayers) are reactive toward coadsorbed CO, producing CO(2) at about 295 K. The uptake of CO on Pt(111) is found to decrease with increasing oxygen coverage beyond 0.25 ML and becomes immeasurable at a surface temperature of 100 K when Pt(111) is partially covered with Pt oxide domains at oxygen coverages above 1.5 ML. The rate of CO oxidation measured as a function of CO beam exposure to the surface exhibits a nearly linear increase toward a maximum for initial oxygen coverages between 0.25 and 0.50 ML and constant surface temperatures between 300 and 500 K. At a fixed CO incident flux, the time required to reach the maximum reaction rate increases as the initial oxygen coverage is increased to 0.50 ML. A time lag prior to the reaction-rate maximum is also observed when Pt oxide domains are present on the surface, but the reaction rate increases more slowly with CO exposure and much longer time lags are observed, indicating that the oxide phase is less reactive toward CO than are chemisorbed oxygen atoms on Pt(111). On the partially oxidized surface, the CO exposure needed to reach the rate maximum increases significantly with increases in both the initial oxygen coverage and the surface temperature. A kinetic model is developed that reproduces the qualitative dependence of the CO oxidation rate on the atomic oxygen coverage and the surface temperature. The model assumes that CO chemisorption and reaction occur only on regions of the surface covered by chemisorbed oxygen atoms and describes the CO chemisorption probability as a decreasing function of the atomic oxygen coverage in the chemisorbed phase. The model also takes into account the migration of oxygen atoms from oxide domains to domains with chemisorbed oxygen atoms. According to the model, the reaction rate initially increases with the CO exposure because the rate of CO chemisorption is enhanced as the coverage of chemisorbed oxygen atoms decreases during reaction. Longer rate delays are predicted for the partially oxidized surface because oxygen migration from the oxide phase maintains high oxygen coverages in the coexisting chemisorbed oxygen phase that hinder CO chemisorption. It is shown that the time evolution of the CO oxidation rate is determined by the relative rates of CO chemisorption and oxygen migration, R(ad) and R(m), respectively, with an increase in the relative rate of oxygen migration acting to inhibit the reaction. We find that the time lag in the reaction rate increases nearly exponentially with the initial oxygen coverage [O](i) (tot) when [O](i) (tot) exceeds a critical value, which is defined as the coverage above which R(ad)R(m) is less than unity at fixed CO incident flux and surface temperature. These results demonstrate that the kinetics for CO oxidation on oxidized Pt(111) is governed by the sensitivity of CO binding and chemisorption on the atomic oxygen coverage and the distribution of surface oxygen phases.  相似文献   
18.
The effects of replacing H2O with D2O solvent upon the electrochemical kinetics of simple transition-metal redox couples containing aquo, ammine or ethylenediamine ligands have been investigated at mercury electrodes as a means of exploring the possible contribution of ligand-aqueous solvent interactions to the activation barrier to outer-sphere electron transfer. The general interpretation of solvent isotope effects upon electrode kinetics is discussed; it is concluded that double-layer corrected isotopic rate ratios (kH/kD)E determined at a constant electrode potential vs. an aqueous reference electrode, as well as those determined at the respective standard potentials in H2O and D2O (kSH/kSD), have particular significance since the solvent liquid-junction potential can be arranged to be essentially zero. For aquo redox couples, values of (kSH/kSD) were observed that are substantially greater than unity and appear to be at least partly due to a greater solvent-reorganization barrier in D2O arising from ligand-solvent hydrogen bonding. For ammine and ethylenediamine complexes values of (kH/kD)E substantially greater than, and smaller than, unity were observed upon the separate deuteration of the ligands and the surrounding solvent respectively. Comparison of isotope rate ratios for corresponding electrochemical and homogeneous outer-sphere reactions involving cationic ammine and aquo complexes yields values of (kH/kD) for the former processes that are typically markedly larger than those predicted by the Marcus model from the homogeneous rate ratios. These discrepancies appear to arise from differences in the solvent environments in the transition states for electrochemical and homogeneous reactions.  相似文献   
19.
Excited state mixed valence (ESMV) occurs in molecules in which the ground state has a symmetrical charge distribution but the excited state possesses two or more interchangeably equivalent sites that have different formal oxidation states. Although mixed valence excited states are relatively common in both organic and inorganic molecules, their properties have only recently been explored, primarily because their spectroscopic features are usually overlapped or obscured by other transitions in the molecule. The mixed valence excited state absorption bands of 2,3-di-p-anisyl-2,3-diazabicyclo[2.2.2]octane radical cation are well-separated from others in the absorption spectrum and are particularly well-suited for detailed analysis using the ESMV model. Excited state coupling splits the absorption band into two components. The lower energy component is broader and more intense than the higher energy component. The absorption bandwidths are caused by progressions in totally symmetric modes, and the difference in bandwidths is caused by the coordinate dependence of the excited state coupling. The Raman intensities obtained in resonance with the high and low energy components differ significantly from those expected based on the oscillator strengths of the bands. This unexpected observation is a result of the excited state coupling and is explained by both the averaging of the transition dipole moment orientation over all angles for the two types of spectroscopies and the coordinate-dependent coupling. The absorption spectrum is fit using a coupled two-state model in which both symmetric and asymmetric coordinates are included. The physical meaning of the observed resonance Raman intensity trends is discussed along with the origin of the coordinate-dependent coupling. The well-separated mixed valence excited state spectroscopic components enable detailed electronic and resonance Raman data to be obtained from which the model can be more fully developed and tested.  相似文献   
20.
The optical absorption spectra of the delocalized intervalence radical cations of seven o,o'-linked benzidine derivatives that have the nitrogens protected as 9-(9-aza-bicyclo[3.3.1]nonan-3-one) derivatives are discussed and compared with that of the p-phenylene radical cation. The linking units are CH2, CH2CH2, NMe, S, SO2, and C=O, and we also studied H,H (the unlinked benzidine). The lowest-energy absorption band is assigned as the transition from the antibonding combination of symmetrical N and aromatic orbitals to the antibonding combination of the antisymmetric N and aromatic orbitals using TD-DFT calculations, and a good correlation between the observed transition energies and those calculated using the simple Koopmans theorem-based "neutral in-cation geometry" calculations on the UB3LYP/6-31G* structures is found. The use of the two-state model that equates the electronic interaction through the bridge between the amino groups with half of the lowest transition energy is seriously incorrect for these and other delocalized intervalence compounds. The problem of extracting the electronic interactions that actually are involved from calculated transition energies is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号