It is well known that certain special classes of self-gravitating point-like defects, such as global (non gauged) monopoles, give rise to non-asymptotically flat space–times characterized by solid angle deficits, whose size depends on the details of the underlying microscopic models. The scattering of electrically neutral particles on such space–times is described by amplitudes that exhibit resonant behaviour when thescattering and deficit angles coincide. This, in turn, leads to ring-like structures where the cross sections are formally divergent (“singular lensing”). In this work, we revisit this particular phenomenon, with the twofold purpose of placing it in a contemporary and more general context, in view of renewed interest in the theory and general phenomenology of such defects, and, more importantly, of addressing certain subtleties that appear in the particular computation that leads to the aforementioned effect. In particular, by adopting a specific regularization procedure for the formally infinite Legendre series encountered, we manage to ensure the recovery of the Minkowski space–time, and thus the disappearance of the lensing phenomenon, in the no-defect limit, and the validity of the optical theorem for the elastic total cross section. In addition, the singular nature of the phenomenon is confirmed by means of an alternative calculation, which, unlike the original approach, makes no use of the generating function of the Legendre polynomials, but rather exploits the asymptotic properties of the Fresnel integrals. 相似文献
The present review offers a survey of liquid electrolytes used in dye-sensitized solar cells from the beginning of photoelectrochemical cell research. It handles both the solvents employed, and the prerequisites identified for an ideal liquid solvent, as well as the various effects of electrolyte solutes in terms of redox systems and additives. The conclusions of the present review call for more detailed molecular insight into the electrolyte-electrode interface reactions and structures. 相似文献
Molecular dynamics (MD) simulations of equilibrium structures and flows of polar water and nonpolar methane confined by single-walled carbon nanotubes (SWCNTs) with circular and square cross sections and bounding walls with regular graphene structure and random (amorphous) distribution of carbon atoms have been performed. The results of these simulations show that equilibrium structures of both confined liquids depend strongly on the shape of the cross section of SWCNTs, whereas the structure of their bounding walls has a minor influence on these structures. On contrary, the external pressure driven water and methane flows through above mentioned SWCNTs depend significantly on both the shape of their cross sections and the structure of their bounding walls. 相似文献
Generating in-liquid plasma using continuous microwave radiation has proven problematic as the surface of the electrode undergoes significant deterioration because of the generated plasma. This article describes a method by which this problem can be resolved by the utilization of pulsed microwave radiation from a magnetron microwave generator and presents results in the search for optimal pulsed microwave irradiation conditions; these would avoid damage to the electrode and would afford reduced power consumption. Results show that continuous generation of in-liquid plasma that avoids electrode (antenna) damage requires strict and very limited pulsed oscillation conditions. Evaluation of this device was investigated by the discoloration of a rhodamine-B (RhB) dye-contaminated wastewater, for which it was shown that higher treatment efficiency can be obtained compared to more traditional methods such as the UV photolysis (UV), the UV-assisted photocatalytic TiO2 method (UV/TiO2), and the NaClO methodology (NaClO). The energy consumed during the 3 min needed to discolor 50 mL of a 0.10 mM aqueous RhB dye solution was 6.3?×?10?3 kWh per mg of RhB; complete mineralization of the dye solution by the in-liquid plasma occurred within 15 min (loss of TOC).
The extent of relativistic effects on the Fukui function, which describes local reactivity trends within conceptual density functional theory (DFT), and frontier orbital densities has been analysed on the basis of three benchmark molecules containing the heavy elements: Au, Pb, and Bi. Various approximate relativistic approaches have been tested and compared with the four-component fully relativistic reference. Scalar relativistic effects, as described by the scalar zeroth-order regular approximation methodology and effective core potential calculations, already provide a large part of the relativistic corrections. Inclusion of spin–orbit coupling effects improves the results, especially for the heavy p-block compounds. We thus expect that future conceptual DFT-based reactivity studies on heavy-element molecules can rely on one of the approximate relativistic methodologies. 相似文献
I discuss a model inspired from the string/brane framework, in which our Universe is represented (after perhaps appropriate
compactification) as a three brane, propagating in a bulk space time punctured by D0-brane (D-particle) defects. As the D3-brane
world moves in the bulk, the D-particles cross it, and from an effective observer on D3 the situation looks like a “space-time
foam” with the defects “flashing” on and off (“D-particle foam”). The open strings, with their ends attached on the brane,
which represent matter in this scenario, can interact with the D-particles on the D3-brane universe in a topologically non-trivial
manner, involving splitting and capture of the strings by the D0-brane defects. Such processes are consistently described
by logarithmic conformal field theories on the world-sheet of the strings. Physically, they result in effective decoherence
of the string matter on the D3 brane, and as a result, of CPT Violation, but of a type that implies an ill-defined nature
of the effective CPT operator. Due to electric charge conservation, only electrically neutral (string) matter can exhibit
such interactions with the D-particle foam. This may have unique, experimentally detectable (in principle), consequences for
electrically-neutral entangled quantum matter states on the brane world, in particular the modification of the pertinent Einstein-Podolsky-Rosen
(EPR) Correlation in neutral mesons in an appropriate meson factory. For the simplest scenarios, the order of magnitude of
such effects might lie within the sensitivity of upgraded φ-meson factories. 相似文献
We investigated the specific effects of potassium salts of various anions upon the interfacially templated crystal nucleation of K(2)SO(4). Previously, we have shown that the presence of several salts at low concentrations could induce changes in important crystallization characteristics templated by 1-octadecylamine at the liquid-liquid interface, and that these changes depended greatly on the specific identity of the salt. In this work we extend our surfactant monolayers to include dimethyldioctadecylammonium bromide (DODAB) and hexadecyltrimethylammonium bromide (CTAB). Addition of 10 mM of various potassium salts results in a diminution in efficiency of the templating capability of CTAB monolayer, as evidenced by higher C(onset) values and polycrystalline habit. The ability of the anions to perturb these values varied in a manner consistent with a Hofmeister series. However, DODAB maintained its templating effectiveness regardless of the nature of the salt or concentration. DODAB and CTAB are likely to be undergoing different reordering effects in the monolayer upon binding with chaotropic anions: a combined reduction in surface charge with different monolayer ordering results in a differing template ability. These studies have provided significant insights into the understanding of the interaction of ordered surfactant arrays with salts, and provide exciting possibilities for crystal engineering and materials design. 相似文献