首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3397篇
  免费   164篇
  国内免费   19篇
化学   2602篇
晶体学   28篇
力学   82篇
数学   465篇
物理学   403篇
  2023年   26篇
  2022年   43篇
  2021年   67篇
  2020年   89篇
  2019年   91篇
  2018年   57篇
  2017年   57篇
  2016年   124篇
  2015年   82篇
  2014年   121篇
  2013年   147篇
  2012年   249篇
  2011年   302篇
  2010年   111篇
  2009年   86篇
  2008年   234篇
  2007年   201篇
  2006年   211篇
  2005年   192篇
  2004年   150篇
  2003年   124篇
  2002年   118篇
  2001年   30篇
  2000年   32篇
  1999年   21篇
  1998年   29篇
  1997年   26篇
  1996年   28篇
  1995年   33篇
  1994年   21篇
  1993年   28篇
  1992年   28篇
  1991年   27篇
  1990年   15篇
  1989年   19篇
  1988年   18篇
  1987年   21篇
  1985年   31篇
  1984年   30篇
  1983年   18篇
  1982年   37篇
  1981年   24篇
  1980年   24篇
  1979年   20篇
  1978年   23篇
  1977年   23篇
  1976年   19篇
  1975年   12篇
  1974年   10篇
  1973年   10篇
排序方式: 共有3580条查询结果,搜索用时 15 毫秒
991.
Reversible deactivation radical polymerization (RDRP) techniques have become important tools for polymer chemists because they control the structure and are tolerant to functionality. Photoinduced polymerizations have seen a growing interest due to their mild conditions, as well as spatial and temporal control over the polymerization. Among these techniques, photoinduced electron/energy transfer reversible addition–fragmentation chain transfer polymerization (PET-RAFT) is one of the most widely investigated. While PET-RAFT is seen as an increasingly useful tool, there is still much to understand about the mechanism of this process. In particular, there are ongoing questions regarding the kinetic contribution of electron versus energy transfer. In order to better understand the mechanism, this work aims to use kinetic modeling along with experimental data to help determine the likelihood of the proposed mechanisms for the PET-RAFT process using the trithiocarbonate-mediated polymerization of methyl acrylate with fac-tris[2-phenylpyridinato-C2,N]iridium(III) as a photocatalyst. Simulation data show that electron transfer without a corresponding reduction pathway cannot explain the experimental kinetics, while energy transfer offers a good fit to experimental data. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 139–144  相似文献   
992.
We observed Fabry-Perot fringes in the absorption spectra of hydrogen-bonded layer-by-layer (LBL) films of poly(vinyl pyrrolidone) (PVPON) and poly(acrylic acid) (PAA), which stem from the interferences between beams transmitted and partially reflected at the highly smooth film-air interface and film-quartz interface. The appearance and disappearance of Fabry-Perot fringes can be used to evaluate the homogeneity of the film. They also provide information about the film thickness. Using this optical phenomenon, with a minimal requirement of instrumentation, we studied the effect of several experimental conditions on the film buildup and structure. The film grows linearly with dipping cycles. Films fabricated from higher molecular weight polymers tend to be thicker. Increasing the concentration of the assembly solutions can also make thicker films. However, films from high molecular weight polymers or high concentration assembly solutions may be heterogeneous and do not display Fabry-Perot fringes in their absorption spectra. The defects in these heterogeneous films can be healed by a postannealing in water or diluted HCl to allow the chain rearrangement to complete. We further found the PVPON/PAA films can be eroded by long-term annealing in water or diluted HCl by monitoring the movement of the Fabry-Perot fringes. In most cases, the erosion rate is constant with annealing time. The erosion rate decreases with a decrease in the pH of the media and an increase in the molecular weight of the polymers.  相似文献   
993.
Noncovalent interactions are ubiquitous in ternary systems involving metal ions, DNA/RNA, and proteins and represent a structural motif for design of selective inhibitors of biological function. This contribution shows that small molecules containing platinated purine nucleobases mimic the natural DNA(RNA)-tryptophan recognition interaction of zinc finger peptides, specifically the C-terminal finger of HIV NCp7 protein. Interaction with platinum results in Zn ejection from the peptide accompanied by loss of tertiary structure. Targeting the NCp7-DNA interaction for drug design represents a conceptual advance over electrophiles designed for chemical attack on the zinc finger alone. These results demonstrate examples of a new platinum structural class targeting specific biological processes, distinct from the bifunctional DNA-DNA binding of cytotoxic agents like cisplatin. The results confirm the validity of a chemical biological approach for metallodrug design for selective ternary DNA(RNA)-protein interactions.  相似文献   
994.
The activity of a single-site titanium-based lactide polymerization initiator supported by a ferrocenyl-derivatized salen ligand is shown to be modulated by a chemical redox switch; a substantially higher rate of propagation is found for the neutral catalyst compared to its oxidized dicationic ferrocenium counterpart.  相似文献   
995.
996.
A surface-enhanced Raman scattering-chiral anisotropy (SERS-ChA) effect is reported that combines chiral discrimination and surface Raman scattering enhancement on chiral nanostructured Au films (CNAFs) equipped in the normal Raman scattering Spectrometer. The CNAFs provided remarkably higher enhancement factors of Raman scattering (EFs) for particular enantiomers, and the SERS intensity was proportional to the enantiomeric excesses (ee) values. Except for molecules with mesomeric species, all of the tested enantiomers exhibited high SERS-ChA asymmetry factors (g), ranging between 1.34 and 1.99 regardless of polarities, sizes, chromophores, concentrations and ee. The effect might be attributed to selective resonance coupling between the induced electric and magnetic dipoles associated with enantiomers and chiral plasmonic modes of CNAFs.  相似文献   
997.
The effect of ceria and zirconia grafting onto alumina (α and θ–δ phases) as supports for silicotungstic acid for the dehydration of glycerol to acrolein was studied. 30 % Silicotungstic acid (STA) supported on 5 % zirconia/δ,θ‐alumina was the best catalyst, producing 85 % selectivity to acrolein at 100 % glycerol conversion, and it showed stable activity without using oxygen as a co‐feed. The catalyst produced a STA of 90 g(acrolein) kg(cat)?1 h?1, which was greater than the STA simply supported on δ,θ‐alumina, which only demonstrated 75 % selectivity towards acrolein. The effect of grafting on the support material was investigated by means of nitrogen adsorption, ammonia temperature‐programmed desorption, thermogravimetric analysis, Raman spectroscopy, and powder X‐ray diffraction. A pulsed‐field gradient (PFG) NMR technique was also used to study diffusion processes associated with the catalysts. Diffusion studies of the grafted catalysts showed that zirconia contributes to the formation of more tortuous pathways within the pore structure, leading to the diminution of acid strength and making the catalyst less susceptible to coke formation.  相似文献   
998.
Deracemization, that is, the transformation of a racemate into a single product enantiomer with theoretically 100 % conversion and 100 % ee, is an appealing but also challenging option for asymmetric synthesis. Herein a novel chemo‐enzymatic deracemization concept by a cascade is described: the pathway involves two enantioselective oxidation steps and one non‐stereoselective reduction step, enabling stereoinversion and a simultaneous kinetic resolution. The concept was exemplified for the transformation of rac‐benzylisoquinolines to optically pure (S)‐berbines. The racemic substrates were transformed to optically pure products (ee>97 %) with up to 98 % conversion and up to 88 % yield of isolated product.  相似文献   
999.
In this work, the fabrication, characterization, and application of avidin/Ag nanoparticle layer-by-layer (LbL) films as chemically selective substrates for surface-enhanced resonance Raman scattering (SERRS) is demonstrated. The biospecific interaction between avidin and the small molecule biotin, one of the strongest known to exist in nature, is exploited to preferentially capture biotinylated species from solution. This highly favored adsorption is shown to yield SERRS concentration enhancements and improved detection sensitivities of ca. 102 for commercially available and in situ prepared biotinylated species over their nontagged counterparts.  相似文献   
1000.
Summary: A novel method for the study of the interaction of the platinum drug cis-diamminedichloroplatinum(II) (cis-DDP or cisplatin) with 50-mer oligonucleotides that were printed in high throughput microarray format is introduced. Our aim has been to identify sequence level differences in the interaction of various drug candidates that may serve to enable rational targeting of drugs to specific genes. A microarray of 26 control genes commonly used in oligonucleotide, Affymetrix and c-DNA microarray platforms were microcontact spotted as amine-terminated 50-mer oligonucleotides onto glycidoxypropyltimethoxy silane (GPMS)-modified glass slides. The generalized study format involved hybridization of probes with 10 fluorescently labeled complements as target followed by confocal imaging to reveal original spot intensities. Microarrays were then incubated at 37 °C with hydrolysed cisplatin while in hybridization cassettes, washed in buffer and then scanned again to reveal secondary intensities. We have investigated the influence of cisplatin to stabilize the relative fluorescence intensity via intrastrand crosslinking by studying the impact of varying drug:probe-DNA mole ratio (0:1 (blank), 1:1, 25:1 and 50:1) and annealing temperatures (36, 46, or 56 °C) on retained intensity. ANOVA revealed that 4 of the 10 genes demonstrated (p < 0.0001) the expected result of increased signal retention with decreased temperature and increased drug concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号