首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   9篇
  国内免费   6篇
化学   300篇
晶体学   5篇
力学   13篇
综合类   2篇
数学   40篇
物理学   105篇
  2023年   3篇
  2022年   29篇
  2021年   29篇
  2020年   11篇
  2019年   20篇
  2018年   30篇
  2017年   27篇
  2016年   20篇
  2015年   12篇
  2014年   18篇
  2013年   37篇
  2012年   33篇
  2011年   28篇
  2010年   21篇
  2009年   15篇
  2008年   22篇
  2007年   16篇
  2006年   11篇
  2005年   11篇
  2004年   7篇
  2003年   11篇
  2002年   12篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1964年   1篇
  1963年   1篇
排序方式: 共有465条查询结果,搜索用时 0 毫秒
51.
The search of eco-friendly technologies for nano-synthesis is significant to expand their applications in human welfare. Nowadays, various inorganic nanoparticles with beneficial features have been synthesized via physical, chemical, and biological means. Significant biological applications of silver nanoparticles include on-infectious microbes, target drug delivery, cancer and vector-borne disease control. Their syntheses have been tested from plant fungi, bacteria, and viruses. The bacterial mediated synthesis of silver, gold, zinc and other metal leads to a milestone in nano-medicines. Thus, in this review, we focus on the contribution of Bacilli in the synthesis of silver nanoparticles, the mechanism of action and their potential application in the welfare of human beings.  相似文献   
52.
This article presents an exact algorithm for the precedence-constrained traveling salesman problem, which is also known as the sequential ordering problem. This NP-hard problem has applications in various domains, including operational research and compilers. In this article, the problem is presented and solved in the context of minimizing switching energy in compilers. Most previous work on minimizing switching energy in the compiler domain has been limited to simple heuristics that are not guaranteed to give an optimal solution. In this work, we present an exact algorithm for solving the switching energy minimization problem using a branch-and-bound approach. The proposed algorithm is simple and intuitive, yet powerful. It is the first exact algorithm for the switching energy problem that is shown to solve real instances of the problem within a few seconds per instance. Compared to previous work in the operational research domain, the proposed algorithm is believed to be the most powerful exact algorithm that does not require a linear programming formulation. The proposed algorithm is experimentally evaluated using instances taken from a production compiler. The results show that with a time limit of 10 ms per node, the proposed algorithm optimally solves 99.8 % of the instances. It optimally solves instances with up to 598 nodes within a few seconds. The resulting switching cost is 16 % less than that produced without energy awareness and 5 % less than that produced by a commonly used heuristic.  相似文献   
53.
A highly efficient enantioselective C-H insertion of azavinyl carbenes into unactivated alkanes has been developed. These transition metal carbenes are directly generated from readily available and stable 1-sulfonyl-1,2,3-triazoles in the presence of chiral Rh(II) carboxylates and are used for C-H functionalization of alkanes to access a variety of β-chiral sulfonamides.  相似文献   
54.
A series of novel mono-1,2,3-triazole and bis-1,2,3-triazole acyclonucleoside analogues of 9-(4-hydroxybutyl)guanine was prepared via copper(I)-catalyzed 1,3-dipolar cycloaddition of N-9 propargylpurine, N-1-propargylpyrimidines/as-triazine with the azido-pseudo-sugar 4-azidobutylacetate under solvent-free microwave conditions, followed by treatment with K(2)CO(3)/MeOH, or NH(3)/MeOH. All compounds studied in this work were screened for their antiviral activities [against human rhinovirus (HRV) and hepatitis C virus (HCV)] and antibacterial activities against a series of Gram positive and negative bacteria.  相似文献   
55.
Three wild Omani plants, Moringa peregrina, Acacia nilotica and Rhazya stricta, were selected for the present study. Na, K and Ca contents were determined using flame photometric analysis. M. peregrina seeds (22.5 mg/g) and pods (27.7 mg/g) had higher Na contents than A. nilotica (0.33 mg/g) and R. stricta (0.30 mg/g), whereas the K and Ca contents of R. stricta were significantly higher than those of the other two plants. The protein content was lowest in R. stricta (9.8%) and highest in M peregrina seeds (21.0%). The highest total phenolic contents (TPC) were found in M. peregrina seeds (350.3 mg/g) and the lowest in A. nilotica (66.1 mg/g). The major component of M. peregrina seed oil was oleic acid (74.7%). Gas chromatographic-mass spectrometric analysis (GC-MS) revealed that octadecanal (30.9%) was the major compound in A. nilotica. The presence of various phenolics and flavonoids in M. peregrina, A. nilotica and R. stricta were confirmed by high performance liquid chromatography (HPLC).  相似文献   
56.
The increase in β-lactam-resistant Gram-negative bacteria is a severe recurrent problem in the food industry for both producers and consumers. The development of nanotechnology and nanomaterial applications has transformed many features in food science. The antibacterial activity of zinc oxide nanoparticles (ZnO NPs) and their mechanism of action on β-lactam-resistant Gram-negative food pathogens, such as Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Serratia marcescens, Klebsiella pneumoniae, and Proteus mirabilis, are investigated in the present paper. The study results demonstrate that ZnO NPs possesses broad-spectrum action against these β-lactamase-producing strains. The minimal inhibitory and minimal bactericidal concentrations vary from 0.04 to 0.08 and 0.12 to 0.24 mg/mL, respectively. The ZnO NPs elevate the level of reactive oxygen species (ROS) and malondialdehyde in the bacterial cells as membrane lipid peroxidation. It has been confirmed from the transmission electron microscopy image of the treated bacterial cells that ZnO NPs diminish the permeable membrane, denature the intracellular proteins, cause DNA damage, and cause membrane leakage. Based on these findings, the action of ZnO NPs has been attributed to the fact that broad-spectrum antibacterial action against β-lactam-resistant Gram-negative food pathogens is mediated by Zn2+ ion-induced oxidative stress, actions via lipid peroxidation and membrane damage, subsequently resulting in depletion, leading to β-lactamase enzyme inhibition, intracellular protein inactivation, DNA damage, and eventually cell death. Based on the findings of the present study, ZnO NPs can be recommended as potent broad-spectrum antibacterial agents against β-lactam-resistant Gram-negative pathogenic strains.  相似文献   
57.
58.
59.
60.
This work presents the application of an on-line photoreactor to the detection of 3,5-diamino-trifluoromethyl-benzene (3,5-DABTF) in aqueous solutions. When irradiated at 310 nm, this compound is defluorinated to 3,5-diaminobenzoic acid by a nucleophilic substitution of the fluoride by water. Concomitantly, defluorination intermediates polymerize through amide bonds to give dark-colored compounds. We take advantage of the photocatalyzed defluorination and the subsequent decrease in pH to develop an original and specific photoreactor. Continuous recording of pH and temperature in the outlet of the reactor by a dual electrode gives us an opportunity to optimize the system. In the photoreactor, 3,5-DABTF is immediately and totally transformed as attested by the rapid drop of the flowing solution pH from 6.2 to 3.2 and the chromatographic analysis of the outgoing solutions. The detection remains effective from 1 to 1000 parts per million.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号