首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85914篇
  免费   1811篇
  国内免费   1334篇
化学   30059篇
晶体学   858篇
力学   7183篇
综合类   45篇
数学   32898篇
物理学   18016篇
  2023年   208篇
  2022年   360篇
  2021年   354篇
  2020年   467篇
  2019年   395篇
  2018年   10703篇
  2017年   10486篇
  2016年   6423篇
  2015年   1260篇
  2014年   818篇
  2013年   934篇
  2012年   4506篇
  2011年   11243篇
  2010年   6126篇
  2009年   6477篇
  2008年   7018篇
  2007年   9142篇
  2006年   663篇
  2005年   1632篇
  2004年   1776篇
  2003年   2178篇
  2002年   1271篇
  2001年   399篇
  2000年   453篇
  1999年   328篇
  1998年   317篇
  1997年   269篇
  1996年   333篇
  1995年   222篇
  1994年   171篇
  1993年   156篇
  1992年   118篇
  1991年   119篇
  1990年   95篇
  1989年   100篇
  1988年   95篇
  1987年   75篇
  1986年   82篇
  1985年   67篇
  1984年   54篇
  1983年   39篇
  1982年   42篇
  1981年   44篇
  1980年   47篇
  1979年   44篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
991.
The sufficient amounts of bis(salicylaldehyde) thiocarbohydrazone (STCH) as a lipophilic selective element (3%, w/w), sodium nitrobenzene (NB) as a plasticizer (64%, w/w), tetraphenyl borate (NaTPB) as an anionic additive (3%, w/w), and poly vinyl chloride (PVC) as a polymeric matrix (30%, w/w) was employed to form a PVC membrane of a new Pr3+ ions selective sensor to apply as an indicator electrode in analytical applications. The best electrode response was observed in the slope (19.5 ± 0.7 mV per decade) over a wide concentrations from lower (1.0 × 10?6 mol L–1) to higher (1.0 × 10?2 mol L–1) of Pr3+ ion solution with a detection limit of 8.5 × 10–7 mol L–1. This electrode showed the fast response time about 10 second for praseodymium ion concentration range of 1.0 × 10–6 to 1.0 × 10–2 mol L–1, in the pH range of 2.3–7.9. The matched potential method was applied to study the selectivity of electrode toward Pr3+ ions in comparison with many common cations. The results showed the negligible disturbance of all other cations on the proposed praseodymium(III) electrode. The making sensor has been employed successfully as an indicator electrode in the potentiometric titration of praseodymium(III) solution with EDTA at pH 6.0. Moreover the applicability of the sensor was studied in determination of Pr3+ ion in mixtures of different ions.  相似文献   
992.
Well-dispersed Au/Bi nanoparticles with average size below 10 nm were prepared by using NaBH4 to reduce HAuCl4 with glucose as dispersant. The obtained Au/Bi NPs were well characterized by UV-Vis spectra, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and electrochemical measurements. The electrochemical study found that Bi adlayers on the surface of Au nanoparticles owns two kinds of surface structures, including a low coverage (2 × 2)-Bi adlayer and a close-packed (p × √3)-2 Bi adlayer due to the strong interaction between the two Bi layers and the below Au atoms, which is same with that bulk on Au surface.  相似文献   
993.
Localized surface plasmon resonance (LSPR) is an optical phenomena generated by light when it interacts with conductive nanoparticles that are smaller than the incident wavelength. In this work, we proposed a simple, fast, and green method for spectrophotometric determination of unsymmetrical 1,1-dimethylhydrazine (UDMH) based on LSPR property of gold nanoparticles (AuNPs). An LSPR band is produced via reduction of Au3+ ions in solution by UDMH as active reducing agent in the presence of cetyltrimethylammonium chloride as a capping agent. Some important parameters in the formation of LSPR including Au(III) concentration, pH, concentration of stabilizer, and reaction time were studied and optimized. Under optimum conditions, the LSPR intensity displays linear response with the increasing UDMH concentration in the range from 0.5–10 μg/mL at 550 nm with a detection limit of 0.2 μg/mL. Also, the relative standard deviation for ten replicate determination of 5.0 μg/mL of UDMH was 3%. Usage of AuNPs as new nontoxic reagent instead of hazardous reagents in the spectrophotometric determination of UDMH is a step toward green analytical chemistry. The proposed method was successfully applied for determination of UDMH in water and wastewater samples.  相似文献   
994.
With the goal of obtaining a water soluble polymeric carrier for preparation of fixed facilitated transport membranes, a water soluble amino containing chitosan derivative was prepared through Michael-addition reaction between chitosan and ethyl acrylate followed by amidation of the ester groups with an appropriate diamine. This derivative was characterized using 1H-NMR spectroscopy. Then, facilitated transport membranes were prepared by casting a thin layer of chitosan derivative/poly(vinyl alcohol) blend on a porous polysolfune support; and the effect of fixed carrier’s content, feed temperature and feed pressure on the CO2 permeance, and CO2/CH4 selectivity of produced membranes were studied. A facilitated transport mechanism for CO2 through this membrane was concluded.  相似文献   
995.
Excluding the ion source, an ion mobility spectrometer is fundamentally comprised of drift chamber, ion gate, pulsing electronics, and a mechanism for amplifying and recording ion signals. Historically, the solutions to each of these challenges have been custom and rarely replicated exactly. For the IMS research community few detailed resources exist that explicitly detail the construction and operation of ion mobility systems. In an effort to address this knowledge gap we outline a solution to one of the key aspects of a drift tube ion mobility system, the ion gate pulser. Bradbury-Nielsen or Tyndall ion gates are found in nearly every research-grade and commercial IMS system. While conceptually simple, these gate structures often require custom, high-voltage, floating electronics. In this report we detail the operation and performance characteristics of a wifi-enabled, MOSFET-based pulser design that uses a lithium-polymer battery and does not require high voltage isolation transformers. Currently, each output of this circuit follows a TTL signal with ~20 ns rise and fall times, pulses up to +/? 200 V, and is entirely isolated using fiber optics. Detailed schematics and source code are provided to enable continued use of robust pulsing electronics that ease experimental efforts for future comparison.  相似文献   
996.
NiO layers were deposited by metal-organic chemical vapor deposition using bis-(ethylcyclopentadienyl) nickel (EtCp)2Ni and oxygen or ozone. As a continuation of kinetic study of NiO MOCVD the gas-phase, transformations of (EtCp)2Ni were studied in the temperature range of 380–830 K. Time of reactions corresponding to the residence time of the gas stream in hot zone of the reactor was about 0.1 s under conditions studied. The interaction of (EtCp)2Ni with oxygen started at 450 K and its conversion rate reached the maximum at 700 K. The interaction of (EtCp)2Ni with ozone started at 400 K and its conversion rate reached the maximum at 600 K. Transformations of the gas phase with the temperature in the reaction zone were studied, the model reaction schemes illustrating (EtCp)2Ni transformations in the reaction systems containing oxygen and ozone have developed. In the reaction system (EtCp)2Ni–O2–Ar the main gas-phase products at 380–500 K were CO, CO2, HCO, C2H5OH, CpCOOH, and CpO. Formation of the C2H2O, C3H4O, and C5H8O was found at 630–830 K. The same gas-phase species, (C4H3O)2Ni and dialdehydes was formed in the reaction system (EtCp)2Ni–O3–O2–Ar.
Graphical Abstract ?
  相似文献   
997.
A dual-polarity linear ion trap (LIT) mass spectrometer was developed in this study, and the method for simultaneously controlling and detecting cations and anions was proposed and realized in the LIT. With the application of an additional dipolar DC field on the ejection electrodes of an LIT, dual-polarity mass spectra could be obtained, which include both the mass-to-charge (m/z) ratio and charge polarity information of an ion. Compared with conventional method, the ion ejection and detection efficiency could also be improved by about one-fold. Furthermore, ion–ion reactions within the LIT could be dynamically controlled and monitored by manipulating the distributions of ions with opposite charge polarities. This method was then used to control and study the reaction kinetics of ion–ion reactions, including electron transfer dissociation (ETD) and charge inversion reactions. A dual-polarity collision-induced dissociation (CID) experiment was proposed and performed to enhance the sequence coverage of a peptide ion. Ion trajectory simulations were also carried out for concept validation and system optimization.
Graphical Abstract ?
  相似文献   
998.
Sphingolipids serve not only as components of cellular membranes but also as bioactive mediators of numerous cellular functions. As the biological activities of these lipids are dependent on their structures, and due to the limitations of conventional ion activation methods employed during tandem mass spectrometry (MS/MS), there is a recognized need for the development of improved structure-specific methods for their comprehensive identification and characterization. Here, positive-ionization mode 193 nm ultraviolet photodissociation (UVPD)-MS/MS has been implemented for the detailed structural characterization of lipid species from a range of sphingolipid classes introduced to the mass spectrometer via electrospray ionization as their lithiated or protonated adducts. These include sphingosine d18:1(4E), dihydrosphingosine (sphinganine) d18:0, sphingadiene d18:2(4E,11Z), the isomeric sphingolipids ceramide d18:1(4E)/18:0 and dihydroceramide d18:0/18:1(9Z), ceramide-1-phosphate d18:1(4Z)/16:0, sphingomyelin d18:1(4E)/18:1(9Z) the glycosphingolipids galactosyl ceramide d18:1(4E)/24:1(15Z) and lactosyl ceramide d18:1(4E)/24:0, and several endogenous lipids present within a porcine brain total lipid extract. In addition to the product ions formed by higher energy collision dissociation (HCD), UVPD is shown to yield a series of novel structurally diagnostic product ions resulting from cleavage of both sphingosine carbon–carbon and acyl chain carbon–carbon double bonds for direct localization of site(s) of unsaturation, as well as via diagnostic cleavages of the sphingosine backbone and N–C amide bond linkages. With activation timescales and dissociation efficiencies similar to those found in conventional MS/MS strategies, this approach is therefore a promising new tool in the arsenal of ion activation techniques toward providing complete structural elucidation in automated, high-throughput lipid analysis workflows.
Graphical Abstract ?
  相似文献   
999.
Native ESI-MS is increasingly used for quantitative analysis of biomolecular interactions. In such analyses, peak intensity ratios measured in mass spectra are treated as abundance ratios of the respective molecules in solution. While signal intensities of similar-size analytes, such as a protein and its complex with a small molecule, can be directly compared, significant distortions of the peak ratio due to unequal signal response of analytes impede the application of this approach for large oligomeric biomolecular complexes. We use a model system based on concatenated maltose binding protein units (MBPn, n = 1, 2, 3) to systematically study the behavior of protein mixtures in ESI-MS. The MBP concatamers differ from each other only by their mass while the chemical composition and other properties remain identical. We used native ESI-MS to analyze model mixtures of MBP oligomers, including equimolar mixtures of two proteins, as well as binary mixtures containing different fractions of the individual components. Pronounced deviation from a linear dependence of the signal intensity with concentration was observed for all binary mixtures investigated. While equimolar mixtures showed linear signal dependence at low concentrations, distinct ion suppression was observed above 20 μM. We systematically studied factors that are most often used in the literature to explain the origin of suppression effects. Implications of this effect for quantifying protein–protein binding affinity by native ESI-MS are discussed in general and demonstrated for an example of an anti-MBP antibody with its ligand, MBP.
Graphical Abstract ?
  相似文献   
1000.
Native mass spectrometry (MS) with electrospray ionization (ESI) has evolved as an invaluable tool for the characterization of intact native proteins and non-covalently bound protein complexes. Here we report the structural characterization by high resolution native top-down MS of human thrombin and its complex with the Bock thrombin binding aptamer (TBA), a 15-nucleotide DNA with high specificity and affinity for thrombin. Accurate mass measurements revealed that the predominant form of native human α-thrombin contains a glycosylation mass of 2205 Da, corresponding to a sialylated symmetric biantennary oligosaccharide structure without fucosylation. Native MS showed that thrombin and TBA predominantly form a 1:1 complex under near physiological conditions (pH 6.8, 200 mM NH4OAc), but the binding stoichiometry is influenced by the solution ionic strength. In 20 mM ammonium acetate solution, up to two TBAs were bound to thrombin, whereas increasing the solution ionic strength destabilized the thrombin–TBA complex and 1 M NH4OAc nearly completely dissociated the complex. This observation is consistent with the mediation of thrombin-aptamer binding through electrostatic interactions and it is further consistent with the human thrombin structure that contains two anion binding sites on the surface. Electron capture dissociation (ECD) top-down MS of the thrombin–TBA complex performed with a high resolution 15 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer showed the primary binding site to be at exosite I located near the N-terminal sequence of the heavy chain, consistent with crystallographic data. High resolution native top-down MS is complementary to traditional structural biology methods for structurally characterizing native proteins and protein–DNA complexes.
Graphical Abstract ?
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号