首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   17篇
化学   347篇
晶体学   2篇
力学   2篇
数学   5篇
物理学   30篇
  2024年   1篇
  2023年   3篇
  2022年   32篇
  2021年   27篇
  2020年   9篇
  2019年   22篇
  2018年   22篇
  2017年   17篇
  2016年   12篇
  2015年   20篇
  2014年   12篇
  2013年   27篇
  2012年   29篇
  2011年   26篇
  2010年   21篇
  2009年   14篇
  2008年   13篇
  2007年   12篇
  2006年   15篇
  2005年   14篇
  2004年   6篇
  2003年   11篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有386条查询结果,搜索用时 15 毫秒
101.
The mechanism of the gas-phase reaction of OH radicals with hydroxyacetone (CH3C(O)CH2OH) was studied at 200 Torr over the temperature range 236-298 K in a turbulent flow reactor coupled to a chemical ionization mass-spectrometer. The product yields and kinetics were measured in the presence of O2 to simulate the atmospheric conditions. The major stable product at all temperatures is methylglyoxal. However, its yield decreases from 82% at 298 K to 49% at 236 K. Conversely, the yields of formic and acetic acids increase from about 8% to about 20%. Other observed products were formaldehyde, CO2 and peroxy radicals HO2 and CH3C(O)O2. A partial re-formation of OH radicals (by approximately 10% at 298 K) was found in the OH + hydroxyacetone + O2 chemical system along with a noticeable inverse secondary kinetic isotope effect (k(OH)/k(OD) = 0.78 +/- 0.10 at 298 K). The observed product yields are explained by the increasing role of the complex formed between the primary radical CH3C(O)CHOH and O2 at low temperature. The rate constant of the reaction CH3C(O)CHOH + O2 --> CH3C(O)CHO + HO2 at 298 K, (3.0 +/- 0.6) x 10(-12) cm3 molecule(-1) s(-1), was estimated by computer simulation of the concentration-time profiles of the CH3C(O)CHO product. The detailed mechanism of the OH-initiated oxidation of hydroxyacetone can help to better describe the atmospheric oxidation of isoprene, in particular, in the upper troposphere.  相似文献   
102.
The biological activity of drugs on organisms is associated with the pharmacokinetic properties, such as the ability to penetrate through environments of varying polarity such as cellular organelles. In this area, particular attention is turned to the physicochemical properties that determine the potential of drugs to pass across the blood–brain barrier and thus to act on the central nervous system. In this study, special effort has been devoted to the simulation of passive diffusion of seven drugs (propranolol, ibuprofen, atenolol, promazine, chlorpromazine, imipramine, and desipramine) through the blood–brain barrier by high-performance liquid chromatography (HPLC) using a column with an immobilized artificial membrane. Gradient reverse elution was used to develop a linear correlation model for the capacity factors kIAM and the in vivo logarithmic values of brain-to-blood drug concentration ratios (log BB) with R of 0.9851. Eleven additional pharmaceuticals were determined by the same method to predict their potential to penetrate the blood–brain barrier. The reported analytical method represents an alternative tool for rapid and noninvasive assessment of the absorption properties of chemicals, especially for the development of novel drugs. The retention of the studied compounds on the immobilized artificial membrane column was also compared with three other C18-based stationary phases. Herein, the results of the HPLC determination of drugs using an immobilized artificial membrane are briefly discussed with respect to a general application of the method for evaluating a broader spectrum of pharmaceutical compounds.  相似文献   
103.
104.
Structural Chemistry - The synthesis and structure elucidation of two new compounds, 2-(methylthio)-1,3-diazaspiro[4.4]non-2-ene-4-one (1) and 2-(methylthio)-1,3-diazaspiro[4.4]non-2-ene-4-thione...  相似文献   
105.
There is a great demand for simple, fast and accurate methods for quantification of volatile organic contaminants in soil samples. Solid-phase microextraction (SPME) has a huge potential for this purpose, but its application is limited by insufficient accuracy caused by a matrix effect. The aim of this research was to develop the method for BTEX quantification in soil using combined standard addition (SA) and internal standard (IS) calibration. Deuterated benzene (benzene-d6) was used as the internal standard for all analytes. The optimized method includes spiking replicate samples with different concentrations of BTEX standards and the same concentration of benzene-d6, equilibration of soil samples at 40 °C during 2 h, and SPME–GC–MS analysis. Precision and accuracy of IS and SA methods were compared on different soil matrices. Combined SA + IS method provided more precise calibration plots compared to the conventional SA calibration. The SA + IS calibration provided more precise and accurate results compared with a reference method based on solvent extraction followed by GC–MS when applied to BTEX quantification in real soil samples (spiked with diesel fuel and aged). Recoveries of BTEX from soil samples spiked with known concentrations of analytes using the developed method were in the range of 73–130% with RSD values less than 15% for all BTEX. The proposed simultaneous standard addition and internal standard approach can be advantageous and adopted for improved quantification of other toxic VOCs in soil.  相似文献   
106.
107.
108.
109.
110.
Isomeric mixtures of bromo- and iodohydrins produced via bromohydroxylation and iodohydroxylation of exo-methylene derivative 2 undergo an intramolecular aldol cyclization-dehydration sequence under Reformatsky reaction conditions to give cyclopentenone 1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号