首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1623篇
  免费   61篇
  国内免费   18篇
化学   1031篇
晶体学   36篇
力学   87篇
数学   181篇
物理学   367篇
  2024年   11篇
  2022年   52篇
  2021年   87篇
  2020年   52篇
  2019年   61篇
  2018年   48篇
  2017年   29篇
  2016年   67篇
  2015年   49篇
  2014年   58篇
  2013年   122篇
  2012年   84篇
  2011年   111篇
  2010年   60篇
  2009年   63篇
  2008年   52篇
  2007年   72篇
  2006年   56篇
  2005年   49篇
  2004年   31篇
  2003年   28篇
  2002年   36篇
  2001年   15篇
  2000年   22篇
  1999年   15篇
  1998年   15篇
  1997年   14篇
  1996年   11篇
  1995年   8篇
  1994年   15篇
  1993年   18篇
  1992年   17篇
  1991年   17篇
  1990年   11篇
  1989年   9篇
  1988年   16篇
  1987年   15篇
  1986年   10篇
  1985年   11篇
  1984年   15篇
  1983年   8篇
  1982年   13篇
  1981年   15篇
  1980年   9篇
  1979年   9篇
  1977年   9篇
  1976年   12篇
  1975年   10篇
  1969年   7篇
  1967年   7篇
排序方式: 共有1702条查询结果,搜索用时 15 毫秒
991.
Remarkable progress in solid-state NMR has enabled complete structure determination of uniformly labeled proteins in the size range of 5-10 kDa. Expanding these applications to larger or mass-limited systems requires further improvements in spectral sensitivity, for which inverse detection of 13C and 15N signals with 1H is one promising approach. Proton detection has previously been demonstrated to offer sensitivity benefits in the limit of sparse protonation or with approximately 30 kHz magic-angle spinning (MAS). Here we focus on experimental schemes for proteins with approximately 100% protonation. Full protonation simplifies sample preparation and permits more complete chemical shift information to be obtained from a single sample. We demonstrate experimental schemes using the fully protonated, uniformly 13C,15N-labeled protein GB1 at 40 kHz MAS rate with 1.6-mm rotors. At 500 MHz proton frequency, 1-ppm proton line widths were observed (500 +/- 150 Hz), and the sensitivity was enhanced by 3 and 4 times, respectively, versus direct 13C and 15N detection. The enhanced sensitivity enabled a family of 3D experiments for spectral assignment to be performed in a time-efficient manner with less than a micromole of protein. CANH, CONH, and NCAH 3D spectra provided sufficient resolution and sensitivity to make full backbone and partial side-chain proton assignments. At 750 MHz proton frequency and 40 kHz MAS rate, proton line widths improve further in an absolute sense (360 +/- 115 Hz). Sensitivity and resolution increase in a better than linear manner with increasing magnetic field, resulting in 14 times greater sensitivity for 1H detection relative to that of 15N detection.  相似文献   
992.
A significant challenge in homology detection is to identify sequences that share a common evolutionary ancestor, despite significant primary sequence divergence. Remote homologs will often have less than 30% sequence identity, yet still retain common structural and functional properties. We demonstrate a novel method for identifying remote homologs using a support vector machine (SVM) classifier trained by fusing sequence similarity scores and subcellular location prediction. SVMs have been shown to perform well in a variety of applications where binary classification of data is the goal. At the same time, data fusion methods have been shown to be highly effective in enhancing discriminative power of data. Combining these two approaches in the application SVM-SimLoc resulted in identification of significantly more remote homologs (p-value<0.006) than using either sequence similarity or subcellular location independently.  相似文献   
993.
Coulometric titration, an electrochemical method for measuring oxidation isotherms, has been used to characterize the redox properties of V2O5 and Mg3(VO4)2 between 823 and 973 K. V2O5 shows distinct regions in the isotherms corresponding to equilibrium with mixtures of V2O3 and V2O4 and of V2O4 and V2O5. From this data, the enthalpies for oxidation of V2O3 to V2O4 and for V2O4 to V2O5 are shown to be -380 +/- 10 and -285 +/- 20 kJ mol-1 O2, respectively. Oxidation isotherms for Mg3(VO4)2 exhibit a single step between the oxidized sample (all V+5) and a completely reduced sample (all V+3). The enthalpy of oxidation is found to increase with the oxidation state of the sample, from -370 +/- 30 kJ mol-1 O2 at an O:V ratio of 1.5 to -460 +/- 10 kJ mol-1 O2 at an O:V ratio of 2.5.  相似文献   
994.
Sejwal P  Han Y  Shah A  Luk YY 《Organic letters》2007,9(23):4897-4900
Here, we report a new class of highly chemoselective reactions between squarate derivatives and the amino acid cysteine or unprotected peptides with a N-terminus cysteine that proceed most efficiently in entirely aqueous solution at neutral pH. Kinetic and structural studies reveal that the presence of hydrogen bonding in water is primarily responsible for both the high yield and fast rate of the reaction.  相似文献   
995.
We propose an accurate method to predict interfacial tension between water and nonpolar fluids by using Cahn gradient theory. The only necessary elements are (i) a water contact energy function and (ii) an equation of state (EoS) for the nonpolar fluid, chosen here as the Peng-Robinson EoS. The contact energy, a function of the fluid (adsorbate) surface density, is related to interfacial tension (IFT) by means of the Gibbs adsorption equation. Examining a large number of IFT data, we observe that the water contact energy is a universal function of adsorbate's surface density when proper scaling variables are used: it depends neither on adsorbate nor on temperature. A corresponding-states principle appears to govern the interfacial behavior between water and any nonpolar compound that is sparingly soluble in water. A predictive method (without any adjustable parameter) is therefore available for estimating IFT between water and any nonpolar fluid, whether the fluid is in supercritical or in subcritical states. The method performs well when the adsorbate is sparingly soluble in water, but slightly overestimates IFTs when the adsorbate's solubility in water is significant (e.g., CO2 and H2S). A similar behavior should also hold for interfaces involving a solid substrate.  相似文献   
996.
Plants consistently synthesize and accumulate medically valuable secondary metabolites which can be isolated and clinically tested under in vitro conditions. An advancement with such important phytochemical production has been recognized and utilized as herbal drugs. Bioactive andrographolide (AGL; C20H30O5) isolated from Andrographis paniculate (AP) (Kalmegh) is a diterpenoid lactones having multifunctional medicinal properties including anti-manic, anti-inflammatory, liver, and lung protective. AGL is known for its immunostimulant activity against a variety of microbial infections thereby, regulating classical and alternative macrophage activation, Ag-specific antibody production during immune disorder therapy. In vitro studies with AGL found it to be effective against multiple tumors, neuronal disorders, diabetes, pneumonia, fibrosis, and other diverse therapeutic misadventures. Generally, virus-based diseases like ZIKA, influenza A virus subtype (H1NI), Ebola (EBOV), Dengue (DENV), and coronavirus (COVID-19) epidemics have greatly increased scientific interest and demands to develop more effective and economical immunomodulating drugs with minimal side effects. Trials and in vitro pharmacological studies with AGL and medicinally beneficial herbs might contribute to benefit the human population without using chemical-based synthetic drugs. In this review, we have discussed the possible role of AGL as a promising herbal-chemo remedy during human diseases, viral infections and as an immunity booster.  相似文献   
997.
The present study aimed to analyze the phytoconstituents of Neptunia triquetra (Vahl) Benth. Anti-inflammatory and hepatoprotective activities of ethanol (EE), chloroform (CE) and dichloromethane (DCME) of stem extracts were evaluated using in vivo experimental models. The extracts were analyzed for phytoconstituents using GC-HRMS. Anti-inflammatory activity of CE, EE and DCME was accessed using carrageenan-induced paw oedema, cotton pellet-induced granuloma and the carrageenan-induced air-pouch model in Wistar albino rats. The hepatotoxicity-induced animal models were investigated for the biochemical markers in serum (AST, ALT, ALP, GGT, total lipids and total protein) and liver (total protein, total lipids, GSH and wet liver weight). In the in vivo study, animals were divided into different groups (six in each group) for accessing the anti-inflammatory and hepatoprotective activity, respectively. GC-HRMS analysis revealed the presence of 102 compounds, among which 24 were active secondary metabolites. In vivo anti-inflammatory activity of stem extracts was found in the order: indomethacin > chloroform extract (CE) > dichloromethane extract (DCME) > ethanolic extract (EE), and hepatoprotective activity of stem extracts in the order: CE > silymarin > EE > DCME. The results indicate that N. triquetra stem has a higher hepatoprotective effect than silymarin, however the anti-inflammatory response was in accordance with or lower than indomethacin.  相似文献   
998.
The current study aimed to explore the crude oils obtained from the n-hexane fraction of Scutellaria edelbergii and further analyzed, for the first time, for their chemical composition, in vitro antibacterial, antifungal, antioxidant, antidiabetic, and in vivo anti-inflammatory, and analgesic activities. For the phytochemical composition, the oils proceeded to gas chromatography-mass spectrometry (GC-MS) analysis and from the resultant chromatogram, 42 bioactive constituents were identified. Among them, the major components were linoleic acid ethyl ester (19.67%) followed by ethyl oleate (18.45%), linolenic acid methyl ester (11.67%), and palmitic acid ethyl ester (11.01%). Tetrazolium 96-well plate MTT assay and agar-well diffusion methods were used to evaluate the isolated oil for its minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC), half-maximal inhibitory concentrations (IC50), and zone of inhibitions that could determine the potential antimicrobial efficacy’s. Substantial antibacterial activities were observed against the clinical isolates comprising of three Gram-negative bacteria, viz., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, and one Gram-positive bacterial strain, Enterococcus faecalis. The oils were also effective against Candida albicans and Fusarium oxysporum when evaluated for their antifungal potential. Moreover, significant antioxidant potential with IC50 values of 136.4 and 161.5 µg/mL for extracted oil was evaluated through DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays compared with standard ascorbic acid where the IC50 values were 44.49 and 67.78 µg/mL, respectively, against the tested free radicals. The oils was also potent, inhibiting the α-glucosidase (IC50 5.45 ± 0.42 µg/mL) enzyme compared to the standard. Anti-glucosidase potential was visualized through molecular docking simulations where ten compounds of the oil were found to be the leading inhibitors of the selected enzyme based on interactions, binding energy, and binding affinity. The oil was found to be an effective anti-inflammatory (61%) agent compared with diclofenac sodium (70.92%) via the carrageenan-induced assay. An appreciable (48.28%) analgesic activity in correlation with the standard aspirin was observed through the acetic acid-induced writhing bioassay. The oil from the n-hexane fraction of S. edelbergii contained valuable bioactive constituents that can act as in vitro biological and in vivo pharmacological agents. However, further studies are needed to uncover individual responsible compounds of the observed biological potentials which would be helpful in devising novel drugs.  相似文献   
999.
Three methods of manipulating the kinetics of hydrolysis of polymer conjugates were evaluated. It was demonstrated that either first-order, zero-order or S-shaped kinetic profiles could be achieved by systematic changes in the chemical composition of several series of model side-chain substituted polyacrylates. The changes in kinetics were shown to arise from an increase in the rate constant during solvolysis, resulting from predictable changes in either the water content, secondary structure, or LCST of the polymer conjugate.  相似文献   
1000.
In this work, nanocomposite graphitic carbon nitride/biochar is successfully prepared by physical mixing method to achieve efficient charge separation and photodegradation of RhB dye under sunlight. The biochar is synthesized by heating biomass in muffle furnace in an inert atmosphere. The graphitic carbon nitride is prepared using melamine as a precursor and heating it in a muffle furnace in air atmosphere. The structural characterizations FTIR and X-ray diffraction are done to confirm the functional groups and crystallography of prepared samples. The photodegradation of RhB dye by nanocomposite is analyzed using a UV–visible spectrophotometer under solar irradiation. It is found that the RhB dye is completely reduced by the nanocomposite in less than 6 min in the presence of sunlight. The kinetic study confirms the photodegradation of RhB dye is first order reaction and rate constant is found to be 0.31 min−1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号