首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3786篇
  免费   70篇
  国内免费   7篇
化学   2608篇
晶体学   17篇
力学   65篇
数学   658篇
物理学   515篇
  2021年   27篇
  2020年   35篇
  2019年   33篇
  2018年   49篇
  2017年   40篇
  2016年   77篇
  2015年   59篇
  2014年   66篇
  2013年   159篇
  2012年   124篇
  2011年   170篇
  2010年   134篇
  2009年   110篇
  2008年   137篇
  2007年   150篇
  2006年   113篇
  2005年   135篇
  2004年   137篇
  2003年   97篇
  2002年   99篇
  2001年   55篇
  2000年   80篇
  1999年   66篇
  1998年   56篇
  1997年   57篇
  1996年   58篇
  1995年   50篇
  1994年   42篇
  1993年   64篇
  1992年   57篇
  1991年   42篇
  1990年   30篇
  1989年   34篇
  1988年   43篇
  1987年   36篇
  1986年   54篇
  1985年   63篇
  1984年   47篇
  1983年   32篇
  1982年   38篇
  1981年   51篇
  1980年   42篇
  1979年   57篇
  1978年   41篇
  1977年   43篇
  1976年   37篇
  1975年   33篇
  1974年   37篇
  1972年   26篇
  1970年   24篇
排序方式: 共有3863条查询结果,搜索用时 93 毫秒
961.
Trichloroberyllate Complexes of Dimethyl Cyanamide, Morpholine, and 4,4′‐Bipyridine The trichloroberyllate complexes (Ph4P)[BeCl3(NCNMe2)] ( 1 ), (Ph4P)[BeCl3{HN(CH2)4O}] ( 2 ), and (Ph4P)2[(BeCl3)2(4,4′‐bipy)] ( 3 ) were prepared by reactions of (Ph4P)2[Be2Cl6] with dimethyl cyanamide, trimethylsilylmorpholinate, and 4,4′‐bipyridine, respectively, in dichloromethane solutions. 1 ‐ 3 were characterized by X‐ray crystallography and by IR‐spectroscopy. 1 ·CH2Cl2: Space group P1, Z = 1, lattice dimensions at 173 K: a = 714.2(1), b = 919.5(2), c = 1233.4(2) pm, α = 94.97(1)°, β = 90.86(1)°, γ = 111.90(1)°, R1 = 0.0310. In the complex anion [BeCl3(NCNMe2)]? the dimethyl cyanamide ligand is coordinated via a linear Be–N≡C‐NMe2 arrangement, the CH2Cl2 molecules forming linear chains by hydrogen bridges ···HCH···Cl··· with the chlorine atoms of the {BeCl3?} groups. 2 : Space group , Z = 2, lattice dimensions at 173 K: a = 1050.9(1), b = 1099.7(1), c = 1308.3(2) pm, α = 87.57(1)°, β = 70.97(1)°, γ = 74.58(1)°, R1 = 0.0397. The complex anions are dimerized by centrosymmetric puckered eight‐membered [Be–N–H···Cl]2 rings. 3 ·2CH2Cl2: Space group , Z = 2, lattice dimensions at 173 K: a = 1095.4(1), b = 1559.6(2), c = 1869.8(3) pm, α = 79.12(1)°, β = 73.83(1)°, γ = 78.76(1)°, R1 = 0.0548. The complex contains dianions [Cl3Be(μ‐bipy)BeCl3]2? with Be–N distances of 177.0(6) and 178.5(6) pm. Both {BeCl3}? groups form C–H···Cl hydrogen bridges with the dichloromethane molecules.  相似文献   
962.
Bromination of the ethano-dimer of α-tocopherol (6) afforded pyrano-spirodimer of α-tocopherol (7) quantitatively, while the methano-dimer of α-tocopherol (10) produced a mixture of products, including the furano-spirodimer 11, pyrano-spirodimer 7, and 5-bromo-γ-tocopherol (12), the latter two formed in an unusual dealkylative fragmentation step. The mechanisms were studied by a combination of trapping reactions as well as kinetic and computational studies.  相似文献   
963.
A new series of [mu-tris-{1,n-bis(tetrazol-1-yl)alkane-N4,N4'}iron(II)] bis(perchlorate) spin-crossover coordination polymers ([Fe(nditz)3](ClO4)2]; n = 4-9) has been synthesised and characterised. The ditetrazole bridging ligands provide octahedral symmetry at the iron(II) centres while allowing the distance between iron(II) centres to be varied. These polymers have therefore been investigated to determine the effects of spacer length on their thermal and light-induced spin-transition behaviour. An increase in the number of carbon atoms in the spacer (n) raises the thermal spin-crossover temperature, while decreasing the stability of the light-induced metastable state generated through the light-induced excited spin state trapping (LIESST) effect by irradiating the sample at 530 nm. Remarkably, however, the parity of the spacer also has an effect, enabling the series of complexes to be divided into two sub-series depending on whether the bridging ligand possesses an even or an odd number of carbon atoms. An explanation at the molecular level using the single configurational coordinate (SCC) model is presented.  相似文献   
964.
We have calculated the thermochemical parameters for the reactions H(2)SO(4) + H(2)O <--> H(2)SO(4).H(2)O and H(2)SO(4) + NH(3) <--> H(2)SO(4).NH(3) using the B3LYP and PW91 functionals, MP2 perturbation theory and four different basis sets. Different methods and basis sets yield very different results with respect to, for example, the reaction free energies. A large part, but not all, of these differences are caused by basis set superposition error (BSSE), which is on the order of 1-3 kcal mol(-1) for most method/basis set combinations used in previous studies. Complete basis set extrapolation (CBS) calculations using the cc-pV(X+d)Z and aug-cc-pV(X+d)Z basis sets (with X = D, T, Q) at the B3LYP level indicate that if BSSE errors of less than 0.2 kcal mol(-1) are desired in uncorrected calculations, basis sets of at least aug-cc-pV(T+d)Z quality should be used. The use of additional augmented basis functions is also shown to be important, as the BSSE error is significant for the nonaugmented basis sets even at the quadruple-zeta level. The effect of anharmonic corrections to the zero-point energies and thermal contributions to the free energy are shown to be around 0.4 kcal mol(-1) for the H(2)SO(4).H(2)O cluster at 298 K. Single-point CCSD(T) calculations for the H(2)SO(4).H(2)O cluster also indicate that B3LYP and MP2 calculations reproduce the CCSD(T) energies well, whereas the PW91 results are significantly overbinding. However, basis-set limit extrapolations at the CCSD(T) level indicate that the B3LYP binding energies are too low by ca. 1-2 kcal/mol. This probably explains the difference of about 2 kcal mol(-1) for the free energy of the H(2)SO(4) + H(2)O <--> H(2)SO(4).H(2)O reaction between the counterpoise-corrected B3LYP calculations with large basis sets and the diffusion-based experimental values of S. M. Ball, D. R. Hanson, F. L Eisele and P. H. McMurry (J. Phys. Chem. A. 2000, 104, 1715). Topological analysis of the electronic charge density based on the quantum theory of atoms in molecules (QTAIM) shows that different method/basis set combinations lead to qualitatively different bonding patterns for the H(2)SO(4).NH(3) cluster. Using QTAIM analysis, we have also defined a proton transfer degree parameter which may be useful in further studies.  相似文献   
965.
The Ir(III) compound Tp(Ms')Ir(N2), that contains a pentadentate, doubly metalated 3-mesityl substituted tris(pyrazolyl)borate ligand, induces the cleavage of C-H and C-Cl bonds of CH2Cl2 to yield a highly electrophilic chlorocarbene Ir=C(H)Cl complex.  相似文献   
966.
In a previous study (Chemical Physics Letters 2005, 401 , 385) we computed the optical rotatory dispersion of (S)-propylene oxide in gas phase and solution using the hierarchy of coupled cluster models CCS, CC2, CCSD, and CC3. Even for the highly correlated CC3 model combined with a flexible basis set, the theoretical gas-phase specific rotation at 355 nm was found to be negative in contrast to the experimental result. We argued that vibrational contributions could be crucial for obtaining a complete understanding of the experimental result. Here, we show that this indeed is the case by using coupled cluster models and density functional theory methods to calculate the vibrational contributions to the gas-phase specific rotation at 355, 589.3, and 633 nm. While density functional theory (B3LYP and SAOP functionals) overestimates the specific rotation at 355 nm by approximately 1 order of magnitude and yields an incorrect sign at 589.3 and 633 nm, the coupled cluster results are in excellent agreement with the experimentally measured optical rotations. We find that all vibrational modes contribute significantly to the optical rotation and that temperature effects must be taken into account.  相似文献   
967.
The reaction of [RuCp(IPri)(CH3CN)2]PF6 (IPri = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) with HCCR (R = COOMe, COOEt, COMe) yields the allyl carbene complexes [RuCp(=C(R)-eta3-CHC(R)CH-IPri)]PF6. This conversion involves selective head-to-tail coupling of two alkynes and an unusual migratory insertion of the N-heterocyclic carbene into the ruthenium-carbon double bond of a ruthenacyclopentatriene intermediate.  相似文献   
968.
Photolysis of the equilibrium mixture (silox)3NbPMe3 (1) + H2 (1-3 atm) right arrow over left arrow (silox)3Nb(Heq)2 (2e, tbp)/(silox)3Nb(Ht)2 (2t, pseudo-Td) + PMe3 causes PC bond cleavage. Depending on conditions, various amounts of (silox)3Nb=CH2 (3), (silox)3Nb=PH (5-H), (silox)3Nb=PMe (5-Me), (silox)3Nb=P(H)Nb(silox)3 (9, precipitated if N2 is present; X-ray), (silox)3NbH (4, active only through equilibration with 2e,t), and CH4 are produced. Addition of PH3 to 1 provides an independent route to 5-H; its deprotonation gives [(silox)3NbP]Li (6), whose methylation yields 5-Me. Early conversion 3:5-H ratios of approximately 3:1 suggest that initial PC bond activation is slow relative to subsequent PC bond cleavages. Addition of HPMe2 and H2PMe to 1 generates (silox)3HNbPMe2 (7) and (silox)3HNbPHMe (8), respectively, and both degrade faster than PMe3. A mechanism based around sequential PC or CH oxidative addition, followed by 1,2-elimination events, is proposed. The limiting step in the decomposition of all PMe3 is a slow hydrogenation of 3 to regenerate 2e,t and produces CH4. Hydrides 2e,t are likely to be the photolytically active species.  相似文献   
969.
Previous studies of the redox states of linear conjugated oligomers as models for polarons and bipolarons in conjugated polymers do not fully address the influence of intermolecular interactions on the electronic structure of conjugated systems in the solid state. Fusion of oligothiophenes onto a bicyclo[4.4.1]undecane core holds the conjugated oligomers in a permanent cofacial stack. One- and two-electron oxidation of the stacked oligomers affords mono(radical cation)s and dications that serve as models for polarons and bipolarons in p-doped conjugated polymers and demonstrates the effect of pi-stacking on the electronic structure of these species.  相似文献   
970.
Let ${\mathcal{C}}$ be the convex hull of points ${{\{{1 \choose x}{1 \choose x}^T \,|\, x\in \mathcal{F}\subset \Re^n\}}}$ . Representing or approximating ${\mathcal{C}}$ is a fundamental problem for global optimization algorithms based on convex relaxations of products of variables. We show that if n ≤ 4 and ${\mathcal{F}}$ is a simplex, then ${\mathcal{C}}$ has a computable representation in terms of matrices X that are doubly nonnegative (positive semidefinite and componentwise nonnegative). We also prove that if n = 2 and ${\mathcal{F}}$ is a box, then ${\mathcal{C}}$ has a representation that combines semidefiniteness with constraints on product terms obtained from the reformulation-linearization technique (RLT). The simplex result generalizes known representations for the convex hull of ${{\{(x_1, x_2, x_1x_2)\,|\, x\in\mathcal{F}\}}}$ when ${\mathcal{F}\subset\Re^2}$ is a triangle, while the result for box constraints generalizes the well-known fact that in this case the RLT constraints generate the convex hull of ${{\{(x_1, x_2, x_1x_2)\,|\, x\in\mathcal{F}\}}}$ . When n = 3 and ${\mathcal{F}}$ is a box, we show that a representation for ${\mathcal{C}}$ can be obtained by utilizing the simplex result for n = 4 in conjunction with a triangulation of the 3-cube.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号