首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
化学   23篇
数学   2篇
物理学   3篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2000年   4篇
排序方式: 共有28条查询结果,搜索用时 350 毫秒
21.
Sample preparation is often necessary to separate and concentrate various compounds prior to analysis of complex samples. In this regard, isoelectric focusing (IEF) is one of the best sample preparation methods. With this approach, however, carrier ampholytes have to be introduced into the samples, which may result in matrix interferences. In this paper, a simple ampholyte-free IEF free-flow electrophoresis design was developed for the separation of proteins. beta-Lactoglobulin, hemoglobin, myoglobin and cytochrome c were selected as model analytes. The experimental design took advantage of the electrolysis-driven production of H(+) and OH(-) ions that migrated from the anode and cathode, respectively, establishing a pH gradient spanning from 2.3 to 8.9. The separation chamber was filled with silanized glass beads as a support medium. Dialysis membranes were mounted at the two sides of the separation chamber (made of glass slides) and sealed with 2% agarose gel. The separated proteins drained from the outlets of the separation chamber and could be successfully collected into small glass tubes. The focusing process was visually observed and the separation was confirmed by capillary isoelectric focusing (cIEF) with pI markers.  相似文献   
22.
The Raman spectroscopic characterization of the orthorhombic phase of Cs2RuO4 was carried out by means of group theory and quantum chemical analysis. Multiple models based on ruthenate (VI+) tetrahedra were tested, and characterization of all the active Raman modes was achieved. A comparison of Raman spectra of Cs2RuO4, Cs2MoO4, and Cs2WO4 was also performed. Raman laser heating induced a phase transition from an ordered to a disordered structure. The temperature‐phase transition was calculated from the anti‐Stokes/Stokes ratio and compared with the ones measured at macroscopic scale. The phase transition is connected with tilting and/or rotations of RuO4 tetrahedra, which lead to a disorder at the RuO4 sites. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd.  相似文献   
23.
Lemma K  Shi T  Elding LI 《Inorganic chemistry》2000,39(8):1728-1734
The reduction of the platinum(IV) prodrug trans,trans,trans-[PtCl2(OH)2(c-C6H11NH2)(NH3)] (JM335) by L-cysteine, DL-penicillamine, DL-homocysteine, N-acetyl-L-cysteine, 2-mercaptopropanoic acid, 2-mercaptosuccinic acid, and glutathione has been investigated at 25 degrees C in a 1.0 M aqueous perchlorate medium with 6.8 < or = pH < or = 11.2 using stopped-flow spectrophotometry. The stoichiometry of Pt(IV):thiol is 1:2, and the redox reactions follow the second-order rate law -d[Pt(IV)]/dt = k[Pt(IV)][RSH]tot, where k denotes the pH-dependent second-order rate constant and [RSH]tot the total concentration of thiol. The pH dependence of k is ascribed to parallel reductions of JM335 by the various protolytic species of the thiols, the relative contributions of which change with pH. Electron transfer from thiol (RSH) or thiolate (RS-) to JM335 is suggested to take place as a reductive elimination process through an attack by sulfur at one of the mutually trans chloride ligands, yielding trans-[Pt(OH)2(c-C6H11NH2)(NH3)] and RSSR as the reaction products, as confirmed by 1H NMR. Second-order rate constants for the reduction of JM335 by the various protolytic species of the thiols span more than 3 orders of magnitude. Reduction with RS- is approximately 30-2000 times faster than with RSH. The linear correlation log(kRS) = (0.52 +/- 0.06)-pKRSH--(2.8 +/- 0.5) is observed, where kRS denotes the second-order rate constant for reduction of JM335 by a particular thiolate RS- and KRSH is the acid dissociation constant for the corresponding thiol RSH. The slope of the linear correlation indicates that the reactivity of the various thiolate species is governed by their proton basicity, and no significant steric effects are observed. The half-life for reduction of JM335 by 6 mM glutathione (40-fold excess) at physiologically relevant conditions of 37 degrees C and pH 7.30 is 23 s. This implies that JM335, in clinical use, is likely to undergo in vivo reduction by intracellular reducing agents such as glutathione prior to binding to DNA. Reduction results in the immediate formation of a highly reactive platinum(II) species, i.e., the bishydroxo complex in rapid protolytic equilibrium with its aqua form.  相似文献   
24.
Lemma K  Ellern A  Bakac A 《Inorganic chemistry》2003,42(11):3662-3669
Substitution and exchange reactions of cis- and trans-L(1)(H(2)O)RhH(2+) (L(1) = 1,4,8,11-tetraazacyclotetradecane = [14]aneN(4)) were studied in aqueous solutions by UV-vis and (1)H NMR spectroscopies. At pH 1 and 25 degrees C, the substitution of SCN(-) for the coordinated molecule of water is rapid and thermodynamically favorable. Spectrophotometric determinations yielded the equilibrium constants K = 1.49 x 10(3) M(-1) (cis) and 1.44 x 10(3) (trans). (1)H NMR studies in D(2)O revealed a rapid dynamic process, interpreted as the exchange between coordinated water and X(-) (X = Cl, Br, or I). On the other hand, no line broadening was observed for the strongly bound ligands CN(-) and SCN(-). The complex trans-L(1)(D(2)O)RhH(2+) undergoes a base-catalyzed H/D exchange of the hydride in D(2)O with a rate constant of (1.45 +/- 0.02) x 10(3) M(-1) s(-1). The exchange in the cis isomer is very slow under similar conditions. The complex cis-[L(1)ClRhH](ClO(4)) crystallizes in the centrosymmetric Ponemacr; space group, unit cell dimensions a = 8.9805(11) A, b = 9.1598(11) A, c = 10.4081(13) A, alpha = 81.091(2) degrees, beta = 81.978(2) degrees, gamma = 88.850(2) degrees. The rhodium atom resides in a slightly distorted octahedral environment consisting of the four N atoms of the cyclam, a stereochemically active hydrogen, and a chlorine atom.  相似文献   
25.
The Langmuir-Blodgett (LB) monolayer technique was used to fabricate single molecule LB monolayer containing bis(phenethylimido)perylene (PhPTCD), a red dye dispersed in arachidic acid (AA) with an average doping of 1 molecule per microm2. The monolayer was transferred onto Ag island films to obtain spatially resolved surface-enhanced resonance Raman scattering (SERRS) spectra. The mixed LB monolayers were fabricated with a concentration, on average, of 1, 6, 19 and 118 PhPTCD molecules per microm2 in AA. The AA provides a two-dimensional host matrix whose background signal does not interfere with the detection of the probe molecule's SERRS signal. The properties of the single molecule detection were investigated using micro-Raman with a 514.5-nm laser line. The Ag island surfaces coated with the LB monolayer were mapped with spatial steps of 3 microm and global chemical imaging of the most intense SERRS band in the spectrum was also recorded. The SERRS and surface-enhanced fluorescence (SEF) of the neat and single molecule LB monolayer were recorded in a temperature range from liquid nitrogen to + 200 degrees C. Neat PhPTCD LB monolayer spectra served as reference for the identification of characteristic signatures of the single molecule behavior. The spatial resolution of Raman-microscopy experiments, the multiplicative effect of resonance Raman and SERRS, and the high sensitivity of the new dispersive Raman instruments, allow SERRS to be part of the family of single molecular spectroscopies.  相似文献   
26.
A strategy for top‐down analysis of branched proteins has been reported earlier, which relies on electron transfer dissociation assisted by collisional activation, and software designed for graphic interpretation of tandem mass spectra and adapted for branched proteins. In the present study, the strategy is applied to identify unknown and novel products of reactions in which rationally mutated proteoforms of Rub1 are used to probe the selectivity of E1 and E2 enzymes normally active in ubiquitination. To test and demonstrate this application, components and attachment sites of three branched dimers are deduced and the mutations are confirmed.  相似文献   
27.
Hypothiocyanite (OSCN-) hydrolyzes under alkaline conditions to give thiocarbamate-S-oxide (H2NC(=O)SO-, the conjugate base of carbamothioperoxoic acid) via a mechanism that involves rate-limiting nucleophilic attack of OH- on OSCN-, followed by fast protonation (with no net consumption of H+/OH- at pH 11.7). Thiocarbamate-S-oxide has been characterized by 13C NMR, 15N NMR, UV spectroscopy, and ion chromatography. It has also been independently synthesized by the reaction of thiocarbamate (H2NC(=O)S-) and hypochlorite (OCl-). The properties of thiocarbamate-S-oxide that is produced by hydrolysis of OSCN- and by oxidation of H2NC(=O)S- are the same. The possible relevance of thiocarbamate-S-oxide in human peroxidase defense mechanisms remains to be explored.  相似文献   
28.
The kinetics of comproportionation of hypothiocyanous acid (HOSCN) and thiocyanate (SCN-) to give thiocyanogen ((SCN)2) in acidic aqueous solutions have been determined by double-mixing stopped-flow UV spectroscopy. Hypothiocyanite (OSCN-) was generated at pH 13 by oxidation of excess SCN- with hypobromite (OBr-), followed by a pH jump to acidic conditions ([H+] = 0.20-0.46 M). The observed pseudo-first-order rate constants exhibit first-order dependencies on [H+] and [SCN-] with overall third-order kinetics. The corresponding kinetics of hydrolysis of (SCN)2 have also been examined. Under conditions of high (and constant) [H+] and [SCN-], the kinetics exhibit second-order behavior with respect to [(SCN)2] and complex inverse dependences on [H+] and [SCN-]. Under conditions of low [H+] and [SCN-], the kinetics exhibit first-order behavior with respect to [(SCN)2] and independence with respect to [H+] and [SCN-]. We attribute this behavior to a shift in the rate-limiting step from disproportionation of HOSCN (second-order dependency on [(SCN)2]) to rate-limiting hydrolysis (first-order dependency on [(SCN)2]). Thus, we have determined the following equilibrium constant by the kinetic method: (SCN)2 + H2O HOSCN + SCN- + H+; Khyd = [HOSCN][SCN-][H+]/[(SCN)2] = khyd/kcomp = 19.8(+/-0.7) s-1/ 5.14(+/-0.07) x 103 M-2 s-1 = 3.9 x 10-3 M2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号