首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
化学   23篇
数学   2篇
物理学   3篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2000年   4篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
11.
Two new bisdesmosidic triterpenoid saponins, i.e. 1 and 2 , were isolated, besides the three known saponins 3 – 5 , from the MeOH extract of the aerial parts of Achyranthes aspera Linn. (Amaranthaceae). Their structures were elucidated as β‐D ‐glucopyranosyl 3β‐[Oα‐L ‐rhamnopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranuronosyloxy]machaerinate ( 1 ) and β‐D ‐glucopyranosyl 3β‐[Oβ‐D ‐galactopyranosyl‐(1→2)‐Oα‐D ‐glucopyranuronosyloxy]machaerinate ( 2 ) by NMR spectroscopy, including 2D‐NMR experiments (machaerinic acid=3β,21β‐dihydroxyolean‐12‐en‐28‐oic acid). The other saponins were identified as β‐D ‐glucopyranosyl 3β[Oα‐L ‐rhamnopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranuronosyloxy]oleanolate ( 3 ), β‐D ‐glucopyranosyl 3‐β‐[Oβ‐D ‐galactopyranosyl‐(1→2)‐Oβ‐D ‐glucopyranuronosyloxy]oleanolate ( 4 ), and β‐D ‐glucopyranosyl 3β‐[Oβ‐D ‐glucopyranuronosyloxy]oleanolate ( 5 ) (oleanolic acid=3β‐hydroxyolean‐12‐en‐28‐oic acid).  相似文献   
12.
CIEF with whole column imaging detection (WCID) was used to investigate the interaction of platinum-based anticancer drugs, cis-platinum(II) diamine dichloride (cisplatin) and [SP-4-2-{1R-trans)]-(1,2-cyclohexanediamine-N,N')[ethanedioata(2-)-O,O']platinum (oxaliplatin), with human hemoglobin A(0) (Hb). This technique facilitates the investigation and characterization of the formation of adducts between drugs and proteins. Cisplatin and oxaliplatin were mixed with the target protein at different concentrations (0:1, 1:1, 1:10, 1:50, and 1:100), and the reaction mixtures were incubated for 0, 0.5, 1, 12, 24, 48, and 72 h at 37 degrees C in a water-bath. The focused Hb-drug adduct profiles were imaged by WCID. At higher drug to protein molar ratios (for both oxaliplatin and cisplatin), the results exhibit significant changes in the peak shapes and heights, which may indicate the destabilization of the protein. However, the conformational change was less evident at lower molar ratios. In addition, a major pI shift was observed for the oxaliplatin reaction mixtures (for 1:10, 1:50, and 1:100 ratios). In comparison with previously reported findings obtained by other analytical methods, conclusions were drawn about the validity of CIEF as a simple and convenient method for the investigation of protein-drug interactions. These results may provide useful information for further understanding the activity and toxicity of these chemotherapeutic drugs and improving their clinical performance.  相似文献   
13.
In 1939 Agnew presented a series of conditions that characterized the oscillation of ordinary sequences using ordinary square conservative matrices and square multiplicative matrices. The goal of this paper is to present multidimensional analogues of Agnew’s results. To accomplish this goal we begin by presenting a notion for double oscillating sequences. Using this notion along with square RH-conservative matrices and square RH-multiplicative matrices, we will present a series of characterization of this sequence space, i.e. we will present several necessary and sufficient conditions that assure us that a square RH-multiplicative(square RH-conservative) be such that
for each double real bounded sequences {s k;l } where
In addition, other implications and variations are also presented.   相似文献   
14.
The kinetics and mechanisms of the reaction of cysteine with cysteine thiosulfinate ester in aqueous solution have been studied by stopped-flow spectrophotometry between pH 6 and 14. Two reaction pathways were observed for pH > 12: (1) an essentially pH-independent nucleophilic attack of cysteinate on cysteine thiosulfinate ester, and (2) a pH-dependent fast equilibrium protonation of cysteine sulfenate that is followed by rate-limiting comproportionation of cysteine sulfenic acid with cysteinate to give cystine. For 6 < pH < 12, the rate-determining reaction between cysteinate and cysteine thiosulfinate ester becomes pH-dependent due to the protonation of their amine groups. Hydrolysis of cysteine thiosulfinate ester does not play a role in the aforementioned mechanisms because the rate-determining nucleophilic attack by hydroxide is relatively slow.  相似文献   
15.
Generally, industrial gas turbines (IGT) face transient behavior during start-up, load change, shutdown and variations in ambient conditions. These transient conditions shift engine thermal equilibrium from one steady state to another steady state. In turn, various aero-thermal and mechanical stresses are developed that are adverse for engine’s reliability, availability, and overall health. The transient behavior needs to be accurately predicted since it is highly related to low cycle fatigue and early failures, especially in the hot regions of the gas turbine. In the present paper, several critical aspects related to transient behavior and its modeling are reviewed and studied from the point of view of identifying potential research gaps within the context of fault detection and diagnostics (FDD) under dynamic conditions. Among the considered topics are, (i) general transient regimes and pertinent model formulation techniques, (ii) control mechanism for part-load operation, (iii) developing a database of variable geometry inlet guide vanes (VIGVs) and variable bleed valves (VBVs) schedules along with selection framework, and (iv) data compilation of shaft’s polar moment of inertia for different types of engine’s configurations. This comprehensive literature document, considering all the aspects of transient behavior and its associated modeling techniques will serve as an anchor point for the future researchers, gas turbine operators and design engineers for effective prognostics, FDD and predictive condition monitoring for variable geometry IGT.  相似文献   
16.
17.
A macrocyclic superoxochromium complex L(2)(H(2)O)CrOO(2+)(L(2)=meso-Me(6)-[14]aneN(4)) is generated from L(2)Cr(H(2)O)(2)(2+) and O(2) with k(on)=(2.80 +/- 0.07)x 10(7) M(-1) s(-1). One-electron reduction of L(2)(H(2)O)CrOO(2+) produces a transient hydroperoxo complex that readily undergoes intramolecular conversion to L(2)Cr(v), k(1)= 1.00 +/- 0.01 s(-1) in acidic aqueous solutions, and 0.273 +/- 0.010 s(-1) at pH >7, with an apparent pK(a) of 5.9. The decay of L(2)Cr(v) in the pH range 1.3-6.2 obeys the rate law, -d[L(2)Cr(v)]/dt= (0.0080 (+/- 0.0049)+ 8.19 (+/- 0.13)[H(+)])[L(2)Cr(v)]. Both the kinetics of formation and lifetime of L(2)Cr(v) are significantly different from those for the closely related [14]aneN(4) complex. The X-ray structure of the parent Cr(iii) complex, [L(2)Cr(H(2)O)(2)](ClO(4))(3).4H(2)O, shows that the macrocyclic ligand adopts the most stable, "two up-two down" configuration around the nitrogens.  相似文献   
18.
Electrochemical energy storage and conversion devices play a key role in the development of clean, sustainable, and efficient energy systems to meet the sustainable growth of our society. However, challenging issues including the sluggish kinetics of oxygen electrode reactions involving the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are present, limiting the implementation of devices such as metal‐air batteries, water electrolyzers, and regenerative fuel cells. In this review, various monometallic and bimetallic transition metal oxides (TMOs) and hydroxides are summarized in terms of their application for ORR/OER, in which the merits and demerits of various precious metal and carbon‐based metal oxide materials are discussed, with requirements for better electrocatalysts and catalyst support being introduced as well. Following this, different approaches to improve catalytic activity such as the introduction of doping and defects, the manipulation of crystal facets, and the engineering of supports, compositions, and morphologies are summarized in which TMOs with improved ORR/OER catalytic activities can be synthesized, further improving the speed, stability, and polarization of electrochemical energy storage and conversion devices. Finally, perspectives into the improvement of performance and the better understanding of ORR/OER mechanisms for bifunctional electrocatalysts using in situ spectroscopic techniques and density functional theory calculations are also discussed.  相似文献   
19.
Lemma K  Bakac A 《Inorganic chemistry》2004,43(14):4505-4510
Oxygen atom transfer from trans-L(H(2)O)RhOOH(2+) [L = [14]aneN(4) (L(1)), meso-Me(6)[14]aneN(4) (L(2)), and (NH(3))(4)] to iodide takes place according to the rate law -d[L(H(2)O)RhOOH(2+)]/dt = k(I)[L(H(2)O)RhOOH(2+)][I(-)][H(+)]. At 0.10 M ionic strength and 25 degrees C, the rate constant k(I)/M(-)(2) s(-)(1) has values of 8.8 x 10(3) [L = (NH(3))(4)], 536 (L(1)), and 530 (L(2)). The final products are LRh(H(2)O)(2)(3+) and I(2)/I(3)(-). The (NH(3))(4)(H(2)O)RhOOH(2+)/Br(-) reaction also exhibits mixed third-order kinetics with k(Br) approximately 1.8 M(-)(2) s(-)(1) at high concentrations of acid (close to 1 M) and bromide (close to 0.1 M) and an ionic strength of 1.0 M. Under these conditions, Br(2)/Br(3)(-) is produced in stoichiometric amounts. As the concentrations of acid and bromide decrease, the reaction begins to generate O(2) at the expense of Br(2), until the limit at which [H(+)] 2(NH(3))(4)(H(2)O)RhOH(2+) + O(2); i.e., the reaction has turned into the bromide-catalyzed disproportionation of coordinated hydroperoxide. In the proposed mechanism, the hydrolysis of the initially formed Br(2) produces HOBr, the active oxidant for the second equivalent of (NH(3))(4)(H(2)O)RhOOH(2+). The rate constant k(HOBr) for the HOBr/(NH(3))(4)(H(2)O)RhOOH(2+) reaction is 2.9 x 10(8) M(-)(1) s(-)(1).  相似文献   
20.
Lemma K  Bakac A 《Inorganic chemistry》2004,43(20):6224-6227
Oxygen atom transfer from (NH(3))(4)(H(2)O)RhOOH(2+) to organic and inorganic nucleophiles takes place according to the rate law -d[(NH(3))(4)(H(2)O)RhOOH(2+)]/dt = k[H(+)] [(NH(3))(4)(H(2)O)RhOOH(2+)][nucleophile] for all the cases examined. The third-order rate constants were determined in aqueous solutions at 25 degrees C for (CH(2))(5)S (k = 430 M(-)(2) s(-)(1), micro = 0.10 M), (CH(2))(4)S(2) (182, micro = 0.10 M), CH(3)CH(2)SH (8.0, micro = 0.20 M), (en)(2)Co(SCH(2)CH(2)NH(2))(2+) (711, micro = 0.20 M), and, in acetonitrile-water, CH(3)SPh (130, 10% AN, micro = 0.20 M), PPh(3) (3.74 x 10(3), 50% AN), and (2-C(3)H(7))(2)S (45, 50% AN, micro = 0.20 M). Oxidation of PPh(3) by (NH(3))(4)(H(2)O)Rh(18)O(18)OH(2+) produced (18)OPPh(3). The reaction with a series of p-substituted triphenylphosphines yielded a linear Hammett relationship with rho = -0.53. Nitrous acid (k = 891 M(-)(2) s(-)(1)) is less reactive than the more nucleophilic nitrite ion (k = 1.54 x 10(4) M(-)(2) s(-)(1)).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号