首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3006篇
  免费   182篇
  国内免费   44篇
化学   2126篇
晶体学   35篇
力学   123篇
综合类   2篇
数学   361篇
物理学   585篇
  2024年   33篇
  2023年   59篇
  2022年   231篇
  2021年   297篇
  2020年   178篇
  2019年   166篇
  2018年   149篇
  2017年   122篇
  2016年   192篇
  2015年   127篇
  2014年   139篇
  2013年   235篇
  2012年   203篇
  2011年   237篇
  2010年   130篇
  2009年   114篇
  2008年   126篇
  2007年   109篇
  2006年   79篇
  2005年   64篇
  2004年   40篇
  2003年   35篇
  2002年   34篇
  2001年   13篇
  2000年   12篇
  1999年   7篇
  1998年   11篇
  1997年   6篇
  1996年   8篇
  1995年   11篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1989年   6篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
  1957年   1篇
排序方式: 共有3232条查询结果,搜索用时 15 毫秒
121.
Two dimensional incompressible steady viscous nano-fluid flow with the impacts of heat generation and porous medium is examined numerically. For this objective Ti6Al4v are taken as nano-particles dispersed in different base fluids such as methanol, engine oil and water. Basically in this study we will compare three different nano-fluids to assess their flow behaviour and thermal performance. The flow model is developed under certain assumptions. The two dimensional non-linear PDEs are converted into non-linear ODEs with suitable transformation. The numerical procedure is adopted to find the results by using Bvp4c technique in MATLAB. Moreover, graphs are generated for various parameters against the temperature and velocity profiles. The fluid behaviour for different parameter is examined on velocity and temperature profile. It is depicted that for high values of volume fraction and curvature parameter nano-particles leads to high velocity and temperature profile. Moreover, velocity profile decreases for permeability parameter, while temperature profile enhances for heat generation parameter. The influence of Nusselt number and skin friction also assessed. The model of entropy generation is also presented.  相似文献   
122.
Simmondsia chinensis L. commonly called as Jojoba and belongs to family Simmondsiaceae. It has shown positive pharmacological activities of these compounds which include antidiabetic, antirheumatic, anthelminthic, antipsoriatic, antioxidant, antiepileptic, antigonorrheal, analgesic, anti-inflammatory, and pesticidal activity of jojoba. The multifaceted action of numerous bioactives existing in the seed extract with therapeutic activity have attracted great research interest by pharmaceutical industries. n-hexane extract of Simmondsia chinensis L. (SC) Seeds was analysed by gas chromatography-mass spectroscopy for identification and characterization of phytobioconstituents and its therapeutic claim by traditional system. The major compounds discovered in SC seeds extract are cis-9-octadecen-1-ol (24.85%), 9-octadecen-1-ol, (Z)- (18.24%), Stigmast-5-en-3-ol (14.10%), Ergost-5-en-3-ol, (3-β)-ol (5.26%), (Z)-14-tricosenyl formate (5.24%), Thiositosteroldisulfide (3.64%), Silane, Dimethyl (dimethylpentyloxysilyloxy) tetradecyloxy- (3.41%), Ergost-5-ene, 3-methoxy-, (3β,24R)- (2.55%), Ergosta-5,22-dien-3-ol (2.22%), 1,19-eicosadiene (2.17%), Pentacosane (2.02%), Stigmasta-5,22-dien-3-ol (1.64%), 1,19-eicosadiene (1.57%), 9-octadecen-1-ol, (Z)- (1.46%), 9,19-cyclo-9β-lanostan-3β-ol, 24-methylene- (1.14%), (9Z)-9-octadecenyl palmitate (1.50%), Hexadecanoic acid, 9-octadecenyl ester, (Z) (1.37%), 9Z)-9-octadecenyl (9Z)-9-hexadecenoate (1.01%). The hexane extract of Simmondsia chinensis seeds comprises various polar and nonpolar phytobioconstituents. These compounds were established qualitatively via GC-MS evaluation. GC-MS reports will be promising in pharmaceutical sector in identification of variety of Phytobioconstituents in distinct plant extracts, polyherbal extract and the standardization of particular plant materials.  相似文献   
123.
Considering the significance of non-Newtonian fluid usage in manufacturing such as molten plastics, polymeric materials, pulps, and so on, significant efforts have been made to investigate the phenomenon of non-Newtonian fluids. In this article the influences of heat and mass transfer on non-Newtonian Walter's B fluid flow over uppermost catalytic surface of a paraboloid is encountered. An elasticity of the fluid layer is considered in the freestream together with heat source/sink and has the tendency to cause heat flow in the fluid saturated domain. The flow problem of two-dimensional Walter's B fluid is represented using Law of conservation of mass, momentum, heat, and concentration along with thermal and solutal chemical reactive boundary conditions. The governing equations are non-linear partial differential equation and are non-dimensionalized by employing stream function and similarity transformation. The final dimensionless equations yielded are coupled non-linear ordinary differential equations. Furthermore, shooting technique along with RK-4th order method is used to get the numerical results. Graphs and tables are modeled by using MATLAB software to check the effects of Walter's B parameter, Chemical reaction parameter and Thickness parameter on temperature, velocity, and concentration profiles. Tabular analysis shows the results of some physical parameters like skin friction coefficient, Nusselt number and Sherwood number due to the variation of Walter's B parameter, thickness parameter and chemical reactive parameter.  相似文献   
124.
Cellulose - The sustainable development of oil–gas and petrochemical industries necessitates the development of cost-effective and eco-friendly technologies to treat mass-produced oily...  相似文献   
125.
Cellulose - This study focuses on the synergistic effects of hydroxide based nanoparticles namely aluminum trihydrate (ATH) and zirconium hydroxide (ZHO) on the mechanical characteristics, thermal...  相似文献   
126.
Journal of Thermal Analysis and Calorimetry - Nanofluids have recently attracted attention of many researchers due to their growing potential applications in heat transfer devices. They possess...  相似文献   
127.
Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when grown at heavy metal contaminated soils. Site-specific detailed information is not available on the use of A. tricolor plant in metal phytoremediation from the polluted sites. The study aimed to enhance the uptake of HMs (Pb, Zn, and Cu) via amending poultry litter extract (PLE), vinasse sugarcane (VSC), and humic acid (HA) as natural mobilized organic materials compared to ethylene diamine tetraacetic acid (EDTA), as a common mobilized chemical agent by A. tricolor plant. The studied soils collected from Helwan, El-Gabal El-Asfar (Cairo Governorate), Arab El-Madabeg (Assiut Governorate), Egypt, and study have been conducted under pot condition. Our results revealed all organic materials in all studied soils, except EDTA in EL-Gabal El-Asfar soil, significantly increased the dry weight of the A. tricolor plant compared to the control treatment. The uptake of Pb and Zn significantly (p > 0.05) increased due to applying all organic materials to the studied soils. HA application caused the highest uptake as shown in Pb concentration by more than 5 times in Helwan soil and EDTA by 65% in El-Gabal El-Asfar soil while VSC increased it by 110% in El-Madabeg soil. Also, an increase in Zn concentration due to EDTA application was 58, 42, and 56% for Helwan, El-Gabal El-Asfar, and El-Madabeg soil, respectively. In all studied soils, the application of organic materials increased the remediation factor (RF) than the control. El-Madabeg soil treated with vinasse sugarcane gave the highest RF values; 6.40, 3.26, and 4.02% for Pb, Zn, and Cu, respectively, than the control. Thus, we identified A. tricolor as a successful ornamental candidate that, along with organic mobilization amendments, most efficiently develop soil health, reduce metal toxicity, and recommend remediation of heavy metal-contaminated soils. Additionally, long-term application of organic mobilization amendments and continued growth of A. tricolor under field conditions could be recommended for future directions to confirm the results.  相似文献   
128.
Medicinal plants have been traditionally used to treat cancer in Ethiopia. However, very few studies have reported the in vitro anticancer activities of medicinal plants that are collected from different agro-ecological zones of Ethiopia. Hence, the main aim of this study was to screen the cytotoxic activities of 80% methanol extracts of 22 plants against human peripheral blood mononuclear cells (PBMCs), as well as human breast (MCF-7), lung (A427), bladder (RT-4), and cervical (SiSo) cancer cell lines. Active extracts were further screened against human large cell lung carcinoma (LCLC-103H), pancreatic cancer (DAN-G), ovarian cancer (A2780), and squamous cell carcinoma of the esophagus (KYSE-70) by using the crystal violet cell proliferation assay, while the vitality of the acute myeloid leukemia (HL-60) and histiocytic lymphoma (U-937) cell lines was monitored in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) microtiter assay. Euphorbia schimperiana, Acokanthera schimperi, Kniphofia foliosa, and Kalanchoe petitiana exhibited potent antiproliferative activity against A427, RT-4, MCF-7, and SiSo cell lines, with IC50 values ranging from 1.85 ± 0.44 to 17.8 ± 2.31 µg/mL. Furthermore, these four extracts also showed potent antiproliferative activities against LCLC-103H, DAN-G, A2780, KYSE-70, HL-60, and U-937 cell lines, with IC50 values ranging from 0.086 to 27.06 ± 10.8 µg/mL. Hence, further studies focusing on bio-assay-guided isolation and structural elucidation of active cytotoxic compounds from these plants are warranted.  相似文献   
129.
Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 μM), foliar application of Se (7.06 μM), foliar application of Se + Seed priming with Se (7.06 μM and 75 μM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition.  相似文献   
130.
Valorization of vegetable oil waste residues is gaining importance due to their high protein and polyphenol contents. Protease inhibitors (PIs), proteins from these abundantly available waste residues, have recently gained importance in treating chronic diseases. This research aimed to use canola meal of genetically diverse Brassica napus genotypes, BLN-3347 and Rivette, to identify PIs with diverse functionalities in therapeutic and pharmacological applications. The canola meal PI purification steps involved: native PAGE and trypsin inhibition activity, followed by ammonium sulfate fractionation, anion exchange, gel filtration, and reverse-phase chromatography. The purified PI preparations were characterized using SDS-PAGE, isoelectric focusing (IEF), and N terminal sequencing. SDS-PAGE analysis of PI preparations under native reducing and nonreducing conditions revealed three polymorphic PIs in each genotype. The corresponding IEF of the genotype BLN-3347, exhibited three acidic isoforms with isoelectric points (pI) of 4.6, 4.0, and 3.9, while Rivette possessed three isoforms, exhibiting two basic forms of pI 8.65 and 9.9, and one acidic of pI 6.55. Purified PI preparations from both the genotypes displayed dipeptidyl peptidase-IV (DPP-IV) and angiotensin-converting enzyme (ACE) inhibition activities; the BLN-3347 PI preparation exhibited a strong inhibitory effect with lower IC50 values (DPP-IV 37.42 µg/mL; ACE 129 µg/mL) than that from Rivette (DPP-IV 67.97 µg/mL; ACE 376.2 µg/mL). In addition to potential human therapy, these highly polymorphic PIs, which can inhibit damaging serine proteases secreted by canola plant pathogens, have the potential to be used by canola plant breeders to seek qualitative trait locus (QTLs) linked to genes conferring resistance to canola diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号