首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   10篇
化学   99篇
力学   6篇
数学   39篇
物理学   17篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   9篇
  2019年   5篇
  2018年   5篇
  2017年   2篇
  2016年   6篇
  2015年   9篇
  2014年   7篇
  2013年   12篇
  2012年   7篇
  2011年   4篇
  2010年   8篇
  2009年   9篇
  2008年   11篇
  2007年   7篇
  2005年   5篇
  2004年   9篇
  2003年   6篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
排序方式: 共有161条查询结果,搜索用时 15 毫秒
111.
112.
113.
Heat treatment is an attractive alternative to improve decay resistance of low natural durability wood species. Decay resistance is strongly correlated to thermal degradations of wood cell wall components. Some recent studies proposed the use of wood elemental composition as a valuable marker to predict final properties of the material. These results, initially obtained with pine, have been extended to different softwood and hardwood species to check validity of the method using equipment specially designed to measure mass losses during thermal treatment. Heat treatment was performed on two softwood species (pine and silver fir) and three hardwood species (poplar, beech and ash) at 230 °C under nitrogen for different times to reach mass losses of 5, 10 and 15%. Heat-treated specimens were exposed to fungal decay using the brown rot fungus Poria placenta and the weight losses due to fungal degradation determined as well as initial wood elemental composition. Correlations between weight losses recorded after fungal exposure and elemental composition indicated that carbon content and O/C ratio can be used to predict wood durability conferred by heat treatment. Moreover, it was observed that for given curing conditions thermo-degradation patterns differed considerably according to the wood species. The sole analysis of wood physical properties like its density, thermal conductivity and diffusivity cannot allow explaining the observed differences, which should also depend on thermally activated chemical processes depending on wood chemical composition.  相似文献   
114.
A simple and easily synthesis of new generation of N-donor bipyrazolic tripods by coupling of functionalized pyrazole derivatives and an appropriate primary amine derivative via condensation or nucleophilic substitution reaction is presented. The complexation capacity of these compounds towards bivalent metal ions (Hg2+, Cu2+, Pb2+, Cd2+) and alkaline metal ions (Li+, Na+, K+) were investigated using the liquid–liquid extraction process. The percentage limits of extraction were determined by atomic absorption measurements.  相似文献   
115.
This paper discusses the elaboration of adsorbents from oil shale. The experimental designs a response surface methodology(RSM), which has been applied to optimize the significant preparation factors, such as temperature, time, and the activating agent percentage. The results obtained from central composite design(CCD) revealed that the interaction between the factors was significant for the maximum quantity of adsorption(response). Planned results have shown that a maximum quantity of adsorption for methylene blue is 65 mg/g, which could be achieved with a temperature of 275℃ over 2 h and a percentage of the activating agent of 45%. The predicted values agreed with the experimental finding, with a determination coefficient(R2) of 0.96. The model has been validated by experiments after conditions optimization. The new material(RHO) was characterized by cation exchange capacity, zero charge pH, surface functions, X-ray fluorescence, specific surface area, and electron microscopy analysis. Phenol adsorption was determined using Langmuir, Freundlich and Temkin, which were used to describe the adsorption isotherms. The adsorption capacity of the material was about 263 mg/g, and the kinetic studies showed rapid adsorption.  相似文献   
116.
Colloidally synthesised nanocrystals (NCs) are increasingly utilised as catalysts to drive both thermal and electrocatalytic reactions. Their well-defined size and shape, controlled by organic ligands, are ideal to identify the parameters relevant to the activity, selectivity and stability in catalysis. However, the impact of the native surface ligands during catalysis still remains poorly understood, as does their fate. CuNCs are among the state-of-the-art catalysts for the electrochemical CO2 reduction reaction (CO2RR). In this work, we study CuNCs that are capped by different organic ligands to investigate their impact on the catalytic properties. We show that the latter desorb from the surface at a cathodic potential that depends on their binding strength with the metal surface, rather than their own electroreduction potentials. By monitoring the evolving surface chemistry in situ, we find that weakly bound ligands desorb very rapidly while strongly bound ligands impact the catalytic performance. This work provides a criterion to select labile ligands versus ligands that will persist on the surface, thus offering opportunity for interface design.

The metal–ligand binding strength is a key parameter in determining the role and fate of the surface ligands on nanoparticle catalysts during the electrochemical CO2 reduction reaction.  相似文献   
117.
Electroporation, applied as a non-thermal ablation method has proven to be effective for focal prostate treatment. In this study, we performed pre-clinical research, which aims at exploring the specific impact of this so-called calcium electroporation on prostate cancer. First, in an in-vitro study of DU 145 cell lines, microsecond electroporation (μsEP) parameters were optimized. We determined hence the voltage that provides both high permeability and viability of these prostate cancer cells. Subsequently, we compared the effect of μsEP on cells’ viability with and without calcium administration. For high-voltage pulses, the cell death’s mechanism was evaluated using flow-cytometry and confocal laser microscopy. For lower-voltage pulses, the influence of electroporation on prostate cancer cell mobility was studied using scratch assays. Additionally, we applied calcium-binding fluorescence dye (Fluo-8) to observe the calcium uptake dynamic with the fluorescence microscopy. Moreover, the molecular dynamics simulation visualized the process of calcium ions inflow during μsEP. According to our results calcium electroporation significantly decreases the cells viability by promoting apoptosis. Furthermore, our data shows that the application of pulsed electric fields disassembles the actin cytoskeleton and influences the prostate cancer cells’ mobility.  相似文献   
118.
2‐Thioxo/oxo‐1,2,3,4‐tetrahydropyrimidine‐5‐carboxylate derivatives 2a , 2b , 2c , 2d were prepared by the reaction of ethyl acetoacetate and thiourea or urea with aldehydes using NH4Cl as a catalyst. Compounds 2a and 2c reacted with mono and bihalogenated compounds such as ethyl iodide, chloroacetonitrile, epichlorohydrin, acetyl chloride, ethyl bromoacetate, chloroacetic acid, chloroacetylchloride, and/or oxalyl chloride to afford compounds 3 , 4a , 4b , 5 , 6a , 6b , 7 , 8 , 9 and 10 , respectively. Compounds 2a , 2c , and 7 were allowed to react with p‐fluorobenzaldehyde to yield the corresponding products 11a , 11b , and 12 , respectively. Oxidation of 2a and 2c gave 2b , 13a , 13b , 14 , 15 , 16 dependent on the oxidizing agent used. Vilsmeiere‐Haack formylation of 2a and 2b with POCl3/DMF afforded 17a and 17b . Chlorination of 2b and 2d gave the chlorinated derivative 18a and 18b , which reacted with thiourea to give thioureidopyrimidine 19a and 19b . Reactions of 2a with hydrazine monohydrate, semicarbazide hydrochloride, and sodium hydroxide gave compounds 20 , 21 , 22 , respectively. The cytotoxicity and in vitro anticancer evaluation of some prepared compounds have been assessed against two different human tumor cell lines including breast adenocarcinoma MCF‐7 and human hepatocellular carcinoma HepG2. Antimicrobial and antioxidant activities of some compounds were investigated. The newly synthesized compounds were characterized by IR, 1H‐NMR, 13C‐NMR, and mass spectral data.  相似文献   
119.
Diagnosing atmospheric pressure discharges requires more sophisticated techniques than for low pressure plasmas. The plasma number density is a crucial parameter in several applications. Langmuir probe as a number density measuring technique is not applicable at high pressures because the electron mean free path is shorter than the Debye distance. Microwave interferometry appears to be an effective diagnostic technique in this case. However, because of the high collisionality of atmospheric pressure plasmas, the relationship between the phase shift, as measured by a microwave interferometer, and the plasma number density is not straightforward, as is the case in collisionless plasmas. For the special case of a uniform discharge, the plasma number density is found to depend on the square root of the phase shift.  相似文献   
120.
Using azolium-based ligands for the construction of metal–organic frameworks (MOFs) is a viable strategy to immobilize catalytically active N-heterocyclic carbenes (NHC) or NHC-derived species inside MOF pores. Thus, in the present work, a novel copper MOF referred to as Cu-Sp5-BF4, is constructed using an imidazolinium ligand, H2Sp5-BF4, 1,3-bis(4-carboxyphenyl)-4,5-dihydro-1H-imidazole-3-ium tetrafluoroborate. The resulting framework, which offers large pore apertures, enables the post-synthetic modification of the C2 carbon on the ligand backbone with methoxide units. A combination of X-ray diffraction (XRD), solid-state nuclear magnetic resonance (ssNMR) and electron microscopy (EM), are used to show that the post-synthetic methoxide modification alters the dimensionality of the material, forming a turbostratic phase, an event that further improves the accessibility of the NHC sites promoting a second modification step that is carried out via grafting iridium to the NHC. A combination of X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) methods are used to shed light on the iridium speciation, and the catalytic activity of the Ir–NHC containing MOF is demonstrated using a model reaction, stilbene hydrogenation.

A new MOF with a saturated N-heterocyclic carbene ligand undergoes a series of structural transformations to produce a turbostratic material, which serves as a better support for an iridium hydrogenation catalyst, when compared to the parent material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号