首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   999篇
  免费   30篇
  国内免费   9篇
化学   387篇
晶体学   4篇
力学   22篇
数学   349篇
物理学   276篇
  2021年   4篇
  2020年   13篇
  2019年   12篇
  2018年   15篇
  2017年   14篇
  2016年   28篇
  2015年   13篇
  2014年   24篇
  2013年   54篇
  2012年   47篇
  2011年   55篇
  2010年   23篇
  2009年   25篇
  2008年   51篇
  2007年   54篇
  2006年   56篇
  2005年   54篇
  2004年   37篇
  2003年   27篇
  2002年   28篇
  2001年   14篇
  2000年   25篇
  1999年   11篇
  1998年   11篇
  1997年   12篇
  1996年   19篇
  1995年   12篇
  1994年   21篇
  1993年   17篇
  1992年   20篇
  1991年   12篇
  1990年   12篇
  1989年   7篇
  1988年   6篇
  1987年   10篇
  1986年   5篇
  1985年   19篇
  1984年   21篇
  1983年   14篇
  1982年   15篇
  1981年   17篇
  1980年   11篇
  1979年   14篇
  1978年   9篇
  1977年   11篇
  1976年   7篇
  1975年   17篇
  1974年   9篇
  1973年   6篇
  1967年   3篇
排序方式: 共有1038条查询结果,搜索用时 15 毫秒
41.
An application of a recently proposed [P. Kral et al., Phys. Rev. Lett. 90, 033001 (2003)] two step optical control scenario to the purification of a racemic mixture of 1,3 dimethylallene is presented. Both steps combine adiabatic and diabatic passage phenomena. In the first step, three laser pulses of mutually perpendicular linear polarizations, applied in a "cyclic adiabatic passage" scheme, are shown to be able to distinguish between the L and D enantiomers due to their difference in matter-radiation phase. In the second step, which immediately follows the first, a sequence of pulses is used to convert one enantiomer to its mirror-imaged form. This scenario, which only negligibly populates the first excited electronic state, proves extremely useful for systems such as dimethylallene, which can suffer losses from dissociation and internal conversion upon electronic excitation. We computationally observe conversion of a racemic mixture of dimethylallene to a sample containing approximately 95% of the enantiomer of choice.  相似文献   
42.
PDZ domains are important scaffolding modules that typically bind to the C-termini of their interaction partners. Several structures of such complexes have been solved, revealing a conserved binding site in the PDZ domain and an extended conformation of the bound peptide. A compendium of information regarding PDZ complexes demonstrates that dissimilar C-terminal peptides bind to the same PDZ domain, and different PDZ domains can bind the same peptides. A detailed understanding of the PDZ-peptide recognition is needed to elucidate this complexity. To this end, we have designed a family of docking protocols for PDZ domains (termed PDZ-DocScheme) that is based on simulated annealing molecular dynamics and rotamer optimization, and is applicable to the docking of long peptides (20-40 rotatable bonds) to both known PDZ structures and to the more complicated problem of homology models of these domains. The resulting protocol reproduces the structures of PDZ complexes with peptides 4-8 amino acids long within 1-2 A from the experimental structure when the docking is performed to the original structure. If the structure of the target PDZ domain is an apo structure or a homology model, the docking protocol yields structures within 3 A in 9 out of 12 test cases. The automated docking procedure PDZ-DocScheme can serve in the generation of a structural context for validation of PDZ domain specificity from mutagenesis and ligand binding data.  相似文献   
43.
44.
In this paper we continue our study of stability properties of subnorms on subsets of finite-dimensional, power-associative algebras over the real or the complex numbers.  相似文献   
45.
Ring-opening metathesis polymerization (ROMP)-derived poly(oxanorbornene imide)s bearing bay-linked mono - alkoxy -M1 and 1,7-di-alkoxy M2 functionalized perylene diimides (PDIs) were synthesized using Grubb's third ( G3 ) and Hoveyda-Grubbs second generation ( HG2 ) ruthenium-alkylidene metathesis initiators. The mono-alkoxy-derived PDI-based non-ladderphane polymer poly M1 displayed 67% to 77% of the trans olefin content in the polymer chain depending on the initiator used for the polymerization. When using the symmetrical 1,7-di-alkoxy-derived PDI-based polymer poly M2 having the ladderphane type-structure, this displayed a significant amount of cis and trans olefin contents in the polymer chains, irrespective of the type of initiators used for the polymerization. ROMP of both monomers M1 and M2 proceeded in a well-controlled manner with a linear dependence of molecular weight on the monomer/initiator ratio using G3 as initiator. Optical properties of the ladderphane-based poly M2 and non-ladderphane-based poly M1 were characterized in both solution and the film state. X-ray diffraction (XRD) analysis for all the polymers showed significant π-stacking in the thin film state with ordered molecular packing and closer values of d-spacing for both poly M1 and poly M2 . Film morphology examined by AFM elucidated homogenous smooth polymer surface for both polymers in general, but with some irregularities observed for poly M1 . In addition, CV analysis revealed both polymers could be good candidates as electron-accepting materials, with excellent film-forming ability, and thermal stability.  相似文献   
46.
Template‐assisted formation of multicomponent Pd6 coordination prisms and formation of their self‐templated triply interlocked Pd12 analogues in the absence of an external template have been established in a single step through Pd? N/Pd? O coordination. Treatment of cis‐[Pd(en)(NO3)2] with K3tma and linear pillar 4,4′‐bpy (en=ethylenediamine, H3tma=benzene‐1,3,5‐tricarboxylic acid, 4,4′‐bpy=4,4′‐bipyridine) gave intercalated coordination cage [{Pd(en)}6(bpy)3(tma)2]2[NO3]12 ( 1 ) exclusively, whereas the same reaction in the presence of H3tma as an aromatic guest gave a H3tma‐encapsulating non‐interlocked discrete Pd6 molecular prism [{Pd(en)}6(bpy)3(tma)2(H3tma)2][NO3]6 ( 2 ). Though the same reaction using cis‐[Pd(NO3)2(pn)] (pn=propane‐1,2‐diamine) instead of cis‐[Pd(en)(NO3)2] gave triply interlocked coordination cage [{Pd(pn)}6(bpy)3(tma)2]2[NO3]12 ( 3 ) along with non‐interlocked Pd6 analogue [{Pd(pn)}6(bpy)3(tma)2](NO3)6 ( 3′ ), and the presence of H3tma as a guest gave H3tma‐encapsulating molecular prism [{Pd(pn)}6(bpy)3(tma)2(H3tma)2][NO3]6 ( 4 ) exclusively. In solution, the amount of 3′ decreases as the temperature is decreased, and in the solid state 3 is the sole product. Notably, an analogous reaction using the relatively short pillar pz (pz=pyrazine) instead of 4,4′‐bpy gave triply interlocked coordination cage [{Pd(pn)}6(pz)3(tma)2]2[NO3]12 ( 5 ) as the single product. Interestingly, the same reaction using slightly more bulky cis‐[Pd(NO3)2(tmen)] (tmen=N,N,N′,N′‐tetramethylethylene diamine) instead of cis‐[Pd(NO3)2(pn)] gave non‐interlocked [{Pd(tmen)}6(pz)3(tma)2][NO3]6 ( 6 ) exclusively. Complexes 1 , 3 , and 5 represent the first examples of template‐free triply interlocked molecular prisms obtained through multicomponent self‐assembly. Formation of the complexes was supported by IR and multinuclear NMR (1H and 13C) spectroscopy. Formation of guest‐encapsulating complexes ( 2 and 4 ) was confirmed by 2D DOSY and ROESY NMR spectroscopic analyses, whereas for complexes 1 , 3 , 5 , and 6 single‐crystal X‐ray diffraction techniques unambiguously confirmed their formation. The gross geometries of H3tma‐encapsulating complexes 2 and 4 were obtained by universal force field (UFF) simulations.  相似文献   
47.
Methylpyridinium and methylquinolinium salts were condensed under solvent-free conditions with aromatic aldehydes in the presence of 1,8-diazabicyclo[5.4.]undec-7-ene (DBU) as catalyst, by grinding at room temperature. The products are dyes or useful intermediates. The DBU can be easily recycled and reused.  相似文献   
48.
49.
50.
Hydrated CaCl2, LiI, and MgCl2 salts induce self‐assembly in nonionic surfactants (such as C12H25(OCH2CH2)10OH) to form lyotropic liquid‐crystalline (LLC) mesophases that undergo a phase transition to a new type of soft mesocrystal (SMC) under ambient conditions. The SMC samples can be obtained by aging the LLC samples, which were prepared as thin films by spin‐coating, dip‐coating, or drop‐casting of a clear homogenized solution of water, salt, and surfactant over a substrate surface. The LLC mesophase exists up to a salt/surfactant mole ratio of 8, 10, and 4 (corresponding to 59, 68, and 40 wt % salt/surfactant) in the CaCl2, LiI, and MgCl2 mesophases, respectively. The SMC phase can transform back to a LLC mesophase at a higher relative humidity. The phase transformations have been monitored using powder X‐ray diffraction (PXRD), polarized optical microscopy (POM), and FTIR techniques. The LLC mesophases only diffract at small angles, but the SMCs diffract at both small and wide angles. The broad surfactant features in the FTIR spectra of the LLC mesophases become sharp and well resolved upon SMC formation. The unit cell of the mesophases expands upon SMC transformation, in which the expansion is largest in the MgCl2 and smallest in the CaCl2 systems. The POM images of the SMCs display birefringent textures with well‐defined edges, similar to crystals. However, the surface of the crystals is highly patterned, like buckling patterns, which indicates that these crystals are quite soft. This unusual phase behavior could be beneficial in designing new soft materials in the fields of phase‐changing materials and mesostructured materials, and it demonstrates the richness of the phase behavior in the salt–surfactant mesophases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号