首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4000篇
  免费   87篇
  国内免费   13篇
化学   2294篇
晶体学   27篇
力学   71篇
数学   544篇
物理学   1164篇
  2022年   29篇
  2021年   40篇
  2020年   82篇
  2019年   58篇
  2018年   31篇
  2017年   46篇
  2016年   85篇
  2015年   69篇
  2014年   103篇
  2013年   159篇
  2012年   162篇
  2011年   182篇
  2010年   89篇
  2009年   96篇
  2008年   127篇
  2007年   142篇
  2006年   127篇
  2005年   120篇
  2004年   102篇
  2003年   85篇
  2002年   79篇
  2001年   59篇
  2000年   77篇
  1999年   67篇
  1998年   40篇
  1997年   38篇
  1996年   50篇
  1995年   57篇
  1994年   61篇
  1993年   71篇
  1992年   83篇
  1991年   61篇
  1990年   49篇
  1989年   44篇
  1988年   38篇
  1987年   47篇
  1986年   44篇
  1985年   66篇
  1984年   53篇
  1983年   61篇
  1982年   58篇
  1981年   49篇
  1980年   52篇
  1979年   56篇
  1978年   51篇
  1977年   51篇
  1976年   43篇
  1975年   35篇
  1974年   50篇
  1973年   51篇
排序方式: 共有4100条查询结果,搜索用时 14 毫秒
81.
The K-shell radiated energy (yield) from neon Z-pinch implosions with annular, gas-puff nozzle radii of 1, 1.75, and 2.5 cm was measured for implosion times from 50 to 300 ns while systematically keeping the implosion kinetic energy nearly constant. The implosions were driven by the Hawk inductive-storage generator at the 0.65-MA level. Initial neutral-neon density distributions from the nozzles were determined with laser interferometry. Measured yields are compared with predictions from zero-dimensional (0-D) scaling models of ideal. One-dimensional (1-D) pinch behavior to both benchmark the scaling models, and to determine their utility for predicting K-shell yields for argon implosions of 200 to >300 ns driven by corresponding currents of 4 to 9 MA, such as envisioned for the DECADE QUAD. For all three nozzles, the 0-D models correctly predict the Z-pinch mass for maximum yield. For the 1and 1.75-cm radius nozzles, the scaling models accurately match the measured yields if the ratio of initial to final radius (compression ratio) is assumed to be 8:1. For the 2.5-cm radius nozzle, the measured yields are only one-third of the predictions. Analysis of K-shell spectral measurements suggest that as much as 70% (50%) of the imploded mass is radiating in the K-shell for the 1-cm (1.75-cm) radius nozzle. That fraction is only 10% for the 2.5-cm radius nozzle. The 0-D scaling models are useful for predicting 1-D-like K-shell radiation yields (better than a factor-of-two accuracy) when a nominal (≈10:1) compression ratio is assumed. However, the compression ratio assumed in the models is only an “effective” quantity, so that further interpretations based on the 0-D analysis require additional justification. The lower-than-predicted yield for the 2.5-cm radius nozzle is associated with larger radius and not with longer implosion time, and is probably a result of two-dimensional effects  相似文献   
82.
Iron and its complexes in silicon   总被引:3,自引:0,他引:3  
This article is the first in a series of two reviews on the properties of iron in silicon. It offers a comprehensive summary of the current state of understanding of fundamental physical properties of iron and its complexes in silicon. The first section of this review discusses the position of iron in the silicon lattice and the electrical properties of interstitial iron. Updated expressions for the solubility and the diffusivity of iron in silicon are presented, and possible explanations for conflicting experimental data obtained by different groups are discussed. The second section of the article considers the electrical and the structural properties of complexes of interstitial iron with shallow acceptors (boron, aluminum, indium, gallium, and thallium), shallow donors (phosphorus and arsenic) and other impurities (gold, silver, platinum, palladium, zinc, sulfur, oxygen, carbon, and hydrogen). Special attention is paid to the kinetics of iron pairing with shallow acceptors, the dissociation of these pairs, and the metastability of iron–acceptor pairs. The parameters of iron-related defects in silicon are summarized in tables that include more than 30 complexes of iron as detected by electron paramagnetic resonance (EPR) and almost 20 energy levels in the band gap associated with iron. The data presented in this review illustrate the enormous complexing activity of iron, which is attributed to the partial or complete (depending on the temperature and the conductivity type) ionization of iron as well as the high diffusivity of iron in silicon. It is shown that studies of iron in silicon require exceptional cleanliness of experimental facilities and highly reproducible diffusion and temperature ramping (quenching) procedures. Properties of iron that are not yet completely understood and need further research are outlined. Received: 14 December 1998 / Accepted: 22 February 1999 / Published online: 26 May 1999  相似文献   
83.
Nickel nanoparticles produced by spark discharges were used as aerosol catalyst for the formation of methane. The available surface area of the particles was determined using different methods. It was found that the surface area available for nitrogen adsorption and, therefore, for the methanation reaction remained virtually constant during restructuring of the agglomerates while the surface area based on the mobility was significantly reduced. In general, the reaction parameters such as activation energy and reaction rates agree well with the values for single nickel crystals and foils. At temperatures above 350°C the activation energy and the photoelectric activity of the particles decrease indicating the formation of graphite on the particle surface. Also the change of the work function points to the build up of multiple layers of graphite on the particle surface. The surprisingly low temperature for the surface deactivation may indicate an enhanced formation of carbon atoms at the surface.  相似文献   
84.
Prokscha  T.  Birke  M.  Forgan  E.  Glückler  H.  Hofer  A.  Jackson  T.  Küpfer  K.  Litterst  J.  Morenzoni  E.  Niedermayer  Ch.  Pleines  M.  Riseman  T.  Schatz  A.  Schatz  G.  Weber  H.P.  Binns  C. 《Hyperfine Interactions》1999,120(1-8):569-573
At the Paul Scherrer Institute slow positive muons (μ+) with nearly 100% polarization and an energy of about 10 eV are generated by moderation of an intense secondary beam of surface muons in an appropriate condensed gas layer. These epithermal muons are used as a source of a tertiary beam of tunable energy between 10 eV and 20 keV. The range of these muons in solids is up to 100 nm which allows the extension of the μ+SR techniques (muon spin rotation, relaxation, resonance) to the study of thin films. A basic requirement for the proper interpretation of μ+SR results on thin films and multi-layers is the knowledge of the depth distribution of muons in matter. To date, no data are available concerning this topic. Therefore, we investigated the penetration depth of μ+ with energies between 8 keV and 16 keV in Cu/SiO2 samples. The experimental data are in agreement with simulated predictions. Additionally, we present two examples of first applications of low energy μ+ in μ+SR investigations. We measured the magnetic field distribution inside a 500-nm thin High-TC superconductor (YBa2Cu3O7-δ), as well as the depth dependence of the field distribution near the surface. In another experiment a 500-nm thin sample of Fe-nanoclusters (diameter 2.4(4) nm), embedded in an Ag matrix with a volume concentration of 0.1%, was investigated with transverse field μ+SR. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
85.
We present for the first time a complete characterization of a micro-solenoid for high resolution MR imaging of mass- and volume-limited samples based on three-dimensional B(0), B(1) per unit current (B(1)(unit)) and SNR maps. The micro-solenoids are fabricated using a fully micro-electromechanical systems (MEMS) compatible process in conjunction with an automatic wire-bonder. We present 15 μm isotropic resolution 3D B(0) maps performed using the phase difference method. The resulting B(0) variation in the range of [-0.07 ppm to -0.157 ppm] around the coil center, compares favorably with the 0.5 ppm limit accepted for MR microscopy. 3D B(1)(unit) maps of 40 μm isotropic voxel size were acquired according to the extended multi flip angle (ExMFA) method. The results demonstrate that the characterized microcoil provides a high and uniform sensitivity distribution around its center (B(1)(unit) = 3.4 mT/A ± 3.86%) which is in agreement with the corresponding 1D theoretical data computed along the coil axis. The 3D SNR maps reveal a rather uniform signal distribution around the coil center with a mean value of 53.69 ± 19%, in good agreement with the analytical 1D data along coil axis in the axial slice. Finally, we prove the microcoil capabilities for MR microscopy by imaging Eremosphaera viridis cells with 18 μm isotropic resolution.  相似文献   
86.
We present results from the direct search for dark matter with the XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENON100 is a two-phase time-projection chamber with a 62 kg liquid xenon target. Interaction vertex reconstruction in three dimensions with millimeter precision allows the selection of only the innermost 48 kg as the ultralow background fiducial target. In 100.9 live days of data, acquired between January and June 2010, no evidence for dark matter is found. Three candidate events were observed in the signal region with an expected background of (1.8 ± 0.6) events. This leads to the most stringent limit on dark matter interactions today, excluding spin-independent elastic weakly interacting massive particle (WIMP) nucleon scattering cross sections above 7.0 × 10(-45) cm(2) for a WIMP mass of 50 GeV/c(2) at 90% confidence level.  相似文献   
87.
When electrons are interacting with a ferromagnetic material, their spin-polarization vector is expected to move. This spin motion, comprising an azimuthal precession and a polar rotation about the magnetization direction of the ferromagnet, has been studied in spin-polarized electron scattering experiments both in transmission and reflection geometry. In this review we show that electron-spin motion can be considered as a new tool to study ferromagnetic films and surfaces and we discuss its application to a number of different problems: (a) the transmission of spin-polarized electrons across ferromagnetic films, (b) the influence of spin-dependent gaps in the electronic band structure on the spin motion in reflection geometry, (c) interference experiments with spin-polarized electrons and (d) the influence of lattice relaxations in ferromagnetic films on the spin motion.  相似文献   
88.
Gettering of metallic impurities in photovoltaic silicon   总被引:5,自引:0,他引:5  
 This work addresses the issue of structural defect-metallic impurity interactions in photovoltaic silicon and their effect on minority carrier diffusion length values. Aluminium and phosphorus segregation gettering studies were performed on photovoltaic silicon in order to gain insight into these interactions and quantify the effect of gettering on solar cell performance. Integrated circuit grade silicon was also studied for comparative purposes. Additionally, a novel rapid thermal annealing technique, designed to dissolve metallic impurity precipitates, and Deep Level Transient Spectroscopy were utilized to determine the as-grown impurity concentration in both grades of materials. Significant differences in gettering responses between the two grades of silicon are observed. Gettering treatments greatly improve I.C. grade silicon with a specific gettering temperature providing the optimal response. Photovoltaic grade silicon does not respond as well to the gettering treatments and, in some cases, the material degrades at higher gettering temperatures. The degradation is primarily observed in dislocated regions of multicrystalline photovoltaic silicon. Additionally, these dislocated regions were found to possess the highest as-grown metallic impurity concentration of all the materials studied. The dislocation-free photovoltaic silicon has a higher diffusion length relative to dislocated silicon but could not be improved by the gettering methods employed in this study. A model is presented to describe these phenomena where the high concentration of metallic impurities at dislocations produce relatively low minority carrier diffusion lengths as well as the degrading response with higher gettering temperatures while microdefects create an upper limit to the photovoltaic grade material’s diffusion length. Received: 21 June 1996/Accepted: 2 September 1996  相似文献   
89.
We investigated the growth of thin NaCl films on Ag(1 0 0) by spot-profile-analysis low energy electron diffraction (SPA-LEED), varying extensively the growth temperature (200–500 K) and the film thickness (0.5–14 ML). The incommensurate growth of NaCl on Ag(1 0 0) yields (1 0 0)-terminated epitaxial NaCl domains, which are preferentially oriented with their [0 1 0] axis parallel to that of the substrate. At 300 K, the NaCl domains exhibit an azimuthal mosaicity by 14° around this orientation and the NaCl unit cell is laterally contracted in the first layers by 0.9% with respect to the bulk. At higher growth temperatures, the azimuthal mosaic distribution sharpens and additional distinct orientations appear, presumably due to a higher-order commensurability. The evolution of the azimuthal mosaic distribution with increasing temperature can be ascribed to both the NaCl thermal expansion and higher diffusion rates of NaCl on Ag(1 0 0). The best epitaxy, i.e. that with the highest selectivity of a specific azimuthal domain orientation, is achieved by growing NaCl films at low deposition rate (0.1 ML min−1) on the Ag(1 0 0) substrate at constant high temperature (450–500 K). The observations made here can probably be applied more generally to other heterogeneous interfaces and, in particular, be used to improve the quality of thin insulating films.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号