首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3909篇
  免费   175篇
  国内免费   22篇
化学   2683篇
晶体学   19篇
力学   176篇
综合类   1篇
数学   654篇
物理学   573篇
  2024年   9篇
  2023年   36篇
  2022年   114篇
  2021年   200篇
  2020年   134篇
  2019年   113篇
  2018年   126篇
  2017年   106篇
  2016年   169篇
  2015年   127篇
  2014年   158篇
  2013年   339篇
  2012年   253篇
  2011年   291篇
  2010年   171篇
  2009年   136篇
  2008年   226篇
  2007年   210篇
  2006年   172篇
  2005年   170篇
  2004年   128篇
  2003年   117篇
  2002年   102篇
  2001年   45篇
  2000年   36篇
  1999年   35篇
  1998年   20篇
  1997年   8篇
  1996年   33篇
  1995年   17篇
  1994年   20篇
  1993年   23篇
  1992年   25篇
  1991年   15篇
  1990年   15篇
  1989年   7篇
  1986年   14篇
  1985年   22篇
  1984年   12篇
  1983年   14篇
  1982年   15篇
  1981年   8篇
  1980年   17篇
  1979年   18篇
  1978年   16篇
  1977年   7篇
  1976年   11篇
  1975年   6篇
  1974年   7篇
  1973年   5篇
排序方式: 共有4106条查询结果,搜索用时 406 毫秒
131.
Research on Chemical Intermediates - A series of D–π–A architectures dyes with Coumarin-based derivatives as difluorenylaminocoumarin (DF) and diphenylaminocoumarin (DP) have been...  相似文献   
132.
Increased environmental concerns and global warming have diverted focus from eco-friendly bio-composites. Naturals fibers are abundant and have low harvesting costs with adequate mechanical properties. Hazards of synthetic fibers, recycling issues, and toxic byproducts are the main driving factors in the research and development of bio-composites. Bio-composites are degradable, renewable, non-abrasive, and non-toxic, with comparable properties to those of synthetic fiber composites and used in many applications in various fields. A detailed analysis is carried out in this review paper to discuss developments in bio-composites. The review covers structure, morphology, and modifications of fiber, mechanical properties, degradable matrix materials, applications, and limitations of bio-composites. Some of the key sectors employing bio-composites are the construction, automobile, and packaging industries. Furthermore, bio-composites are used in the field of medicine and cosmetics.  相似文献   
133.
134.
The different contributions of the interfacial capacitance are identified in the case of passive materials or thin protective coatings deposited on the electrode surface. The method is based on a graphical analysis of the EIS results to determine both the passive-film capacitance in the high-frequency domain and the double-layer capacitance in the low-frequency domain. The proposed analysis is shown to be independent of the physicochemical origins of the frequency dispersion of the interfacial capacitances which results, from an analysis point of view of the experimental results, in the use of a constant-phase element However, for a correct evaluation of the thin-film properties such as its thickness, the high-frequency data must be corrected for the double-layer contribution. In particular, it is shown that if the double-layer capacitance gives a frequency-dispersed response, it is necessary to correct the high-frequency part for the double-layer constant-phase elements. This is first demonstrated on synthetic data and then used for the determination of the thickness of thin oxide film formed on Al in neutral pH solution.  相似文献   
135.
A novel series of mixed-ligand complexes of 5,5′-{(1E,1E′)-1,4-phenelynebis(diazene-2,1-diyl)}bis(quinolin-8-ol) (H2L1) as a primary ligand and 4-aminoantipyrine(L2) as a secondary ligand with Mn(II) ion were prepared using two general formulae: [Mn2(H2L1)2(L2)2X4].4Cl (X = OH2( 1 ), ONO2( 2 ), Cl=nil; OAc( 3 ), Cl = nil) and [Mn2(H2L1)(L2)2(O2SO2)2]( 4 ). Free ligands and their complexes were characterized. Electronic absorption spectra of the mixed-ligand complexes indicate a distorted octahedral geometry around the central metal ion, and the anions X are in the axial positions for all compounds. The ligands behave in a neutral bidentate manner, through nitrogen atoms and oxygen atoms of the carbonyl group (L2), whereas H2L1 coordinated through nitrogen and OH groups as a neutral bidentate ligand. All complexes do not contain coordinated water molecules, but complex ( 1 ) contains four water molecules. The water molecules are removed in a single step. The complexes exhibited magnetic susceptibility corresponding to five unpaired electrons. The antimicrobial activity of the Mn(II) mixed-ligand complexes ( 1–4 ) against two gram-positive bacteria, three local gram-negative bacteria, and three fungi species was tested. Mn(II) mixed-ligand complex ( 2 ) exhibited significant antibacterial activity against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas sp. Mixed-ligand complex ( 2 ) exhibited a high potential cytotoxicity against the growth of human lung cancer cells.  相似文献   
136.
The two independent and coordination sites of a newly synthesized bis[2-(hydroxyphenyl)-1,2,4-triazole] platform have been exploited to prepare four monometallic neutral ()PtII complexes carrying DMSO, pyridine, triphenylphosphine, or N-heterocyclic carbene as the fourth ligand. Then, the second coordination site was used to introduce an IR-active rhenium tricarbonyl entity, affording the four corresponding heterobimetallic neutral PtII/ReI complexes, as well as a cationic PtII/ReI derivative. X-ray crystallographic studies showed that distortion of the organic platform occurred to accommodate the coordination geometry of both metal centers. No ligand exchange or transchelation occurred upon incubation of the PtII complexes in aqueous environment or in the presence of FeIII, respectively. The antiproliferative activity of the ligand and complexes was first screened on the triple-negative breast cancer cell line MDA-MB-231. Then, the IC50 values of the most active candidates were determined on a wider panel of human cancer cells (MDA-MB-231, MCF-7, and A2780), as well as on a nontumorigenic cell line (MCF-10A). Low micromolar activities were reached for the complexes carrying a DMSO ligand, making them the first examples of highly active, but hydrolytically stable, PtII complexes. Finally, the characteristic mid-IR signature of the {Re(CO)3} fragment in the Pt/Re heterobimetallic complexes was used to quantify their uptake in breast cancer cells.  相似文献   
137.
We study a model for a massive test particle in a microscopic periodic potential and interacting with a reservoir of light particles. In the regime considered, the fluctuations in the test particle’s momentum resulting from collisions typically outweigh the shifts in momentum generated by the periodic force, so the force is effectively a perturbative contribution. The mathematical starting point is an idealized reduced dynamics for the test particle given by a linear Boltzmann equation. In the limit that the mass ratio of a single reservoir particle to the test particle tends to zero, we show that there is convergence to the Ornstein–Uhlenbeck process under the standard normalizations for the test particle variables. Our analysis is primarily directed towards bounding the perturbative effect of the periodic potential on the particle’s momentum.  相似文献   
138.
In this paper, by using the Lusternik–Schnirelmann category, we obtain a multiplicity result for a quasilinear elliptic system with both concave and convex nonlinearities and critical growth terms in bounded domains.  相似文献   
139.
140.
In this work the applicability of four of the most commonly used viscosity mixing rules to [ionic liquid (IL)+molecular solvent (MS)] systems is assessed. More than one hundred (IL+MS) binary mixtures were selected from the literature to test the viscosity mixing rules proposed by 1) Hind (Hi), 2) Grunberg and Nissan (G–N), 3) Herric (He) and 4) Katti and Chaudhri (K–C). The analyses were performed by estimating the average (absolute or relative) deviations, AADs and ARDs, between the available experimental data and the predicted ideal mixture viscosity values obtained by means of each rule. The interaction terms corresponding to the adjustable parameters inherent to each rule were also calculated and their trends discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号