首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21752篇
  免费   1000篇
  国内免费   150篇
化学   15410篇
晶体学   269篇
力学   854篇
综合类   1篇
数学   1837篇
物理学   4531篇
  2024年   58篇
  2023年   216篇
  2022年   574篇
  2021年   768篇
  2020年   825篇
  2019年   886篇
  2018年   857篇
  2017年   820篇
  2016年   1153篇
  2015年   817篇
  2014年   1211篇
  2013年   2088篇
  2012年   1734篇
  2011年   1695篇
  2010年   1113篇
  2009年   930篇
  2008年   1064篇
  2007年   1014篇
  2006年   759篇
  2005年   664篇
  2004年   496篇
  2003年   427篇
  2002年   343篇
  2001年   185篇
  2000年   147篇
  1999年   125篇
  1998年   89篇
  1997年   120篇
  1996年   115篇
  1995年   83篇
  1994年   82篇
  1993年   103篇
  1992年   109篇
  1991年   85篇
  1990年   77篇
  1989年   78篇
  1988年   54篇
  1987年   59篇
  1986年   47篇
  1985年   75篇
  1984年   75篇
  1983年   56篇
  1982年   61篇
  1981年   44篇
  1980年   59篇
  1979年   68篇
  1978年   56篇
  1977年   57篇
  1976年   46篇
  1975年   36篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
951.
In this paper, 1,2-bis(2-acetamido-6-pyridyl)ethane, receptor 1, having an ethylene spacer is reported to recognise dicarboxylic acids. The binding study in the solution phase is carried out using 1H NMR (1:1) and UV–vis experiments and in the solid phase by single-crystal X-ray analysis. In 1H NMR, the downfield shifts of specific amide protons of receptor 1 in 1:1 complexes of receptor and guest diacids, and in the UV–vis experiment, the appearance of an isosbestic point as well as significant binding constants are observed, which thus unambiguously support the complexation of receptor 1 with dicarboxylic acids in solution. Receptor 2, simple 2-acetamido-6-methylpyridine, has lower binding constants than receptor 1 due to cooperative binding of two pyridine amide groups with two acid groups of diacids. In the solid phase, the ditopic receptor 1 shows a grid-like polymeric hydrogen-bonded network that changes to a polymeric wave-like 1:1 anti-perpendicular network instead of the synsyn polymeric 1:1 (Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett. 2005 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 46, 7187–7191), antianti polymeric 1:1 (Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem. 2006 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 18, 571–574; Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm. 2008, 10, 507–517; Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron 2008, 64, 6426–6433), synsyn 2:2 (Karle, I.L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc. 1997 (a) Garcia-Tellado, F., Goswami, S., Chang, S.K., Geib, S.J. and Hamilton, A.D. 1990. J. Am. Chem. Soc., 112: 73937394. (b) Geib, S.J.; Vicent, C.; Fan, E.; Hamilton, A.D. Angew. Chem. Int. Ed. Engl.1993, 32, 119–121. (c) Garcia-Tellado, F.; Geib, S.J.; Goswami, S.; Hamilton, A.D. J. Am. Chem. Soc.1991, 113, 9265–9269. (d) Karle, I.L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc.1997, 119, 2777–2783. (e) Moore, G.; Papamicaël, C.; Levacher, V.; Bourguignon, J.; Dupas, G. Tetrahedron2004, 60, 4197–4204. (f) Korendovych, I.V.; Cho, M.; Makhlynets, O.V.; Butler, P.L.; Staples, R.J.; Rybak-Akimova, E.V. J. Org. Chem.2008, 73, 4771–4782. (g) Ghosh, K.; Masanta, G.; Fröhlich, R.; Petsalakis, I.D.; Theodorakopoulos, G. J. Phys. Chem. B2009, 113, 7800–7809 [Google Scholar], 119, 2777–2783) or topbottom-bound 1:1 (Garcia-Tellado, F.; Goswami, S.; Chang, S.K.; Geib, S.J.; Hamilton, A.D. J. Am. Chem. Soc. 1990 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 112, 7393–7394) co-crystals.

  相似文献   
952.
A new chromogenic receptor based on 1,2-phenylene derivative containing thiourea moieties is synthesized and examined for its anion binding ability by UV–Vis and 1H NMR studies. The results show that the receptor has selective colorimetric sensing of fluoride over all other anions like chloride, bromide, iodide, nitrate, hydrogen sulphate and acetate.  相似文献   
953.
In this work a cloud-point extraction has been used for the preconcentration of the trace amounts of titanium after complex formation with morin (2′,3,4′,5,7-pentahydroxyflavone) using Triton X-114 as surfactant. The chemical variables affecting the phase separation and the viscosity affecting the detection by flame atomic absorption spectrometry (FAAS) were optimized. At pH 4.5, preconcentration of 50 mL of sample in the presence of 0.08% Triton X-114 and 1.0 × 10?4 M morin enabled the detection limit (c L = 3S b/m) of 2.9 ng/mL titanium and linear range 0.02–2.0 μg/mL to be achived. The preconcentration factor was 61, and the relative standard deviation was 3.8% for 0.1 μg/mL solution of Ti(IV) by repeated assays (n = 9). The proposed method has been applied to the determination of titanium in well water, spiked water and plant (Haloxylon).  相似文献   
954.
955.
A new E,E-stilbenophane was synthesised and characterised. The crystal structure of this cyclophane shows that this molecule has a cup-shaped structure, which hosts a phenyl ring of neighbouring molecule as guest in its cavity with a π–π distance of about 3.7 Å. Moreover, the NMR spectra and theoretical analysis (gauge-independent atomic orbitals (GIAO) and quantum theory of atoms in molecules (QTAIM)) suggest that the silver recognition by E,E-stilbenophane host molecules is based on cation–π interactions in which the π-electrons of the double bonds play a major role.  相似文献   
956.
A fundamental concern in the Quantitative Structure-Activity Relationship approach to toxicity evaluation is the generalization of the model over a wide range of compounds. The data driven modelling of toxicity, due to the complex and ill-defined nature of eco-toxicological systems, is an uncertain process. The development of a toxicity predicting model without considering uncertainties may produce a model with a low generalization performance. This study presents a novel approach to toxicity modelling that handles the involved uncertainties using a fuzzy filter, and thus improves the generalization capability of the model. The method is illustrated by considering a data set dealing with the fathead minnow (Pimephales promelas) toxicity of 568 organic compounds.  相似文献   
957.
958.
Solanopubamine (3β-amino-5α, 22αH, 25βH-solanidan-23β-ol), a steroidal alkaloid was isolated from the alkaloidal fraction of Solanum schimperianum in significant yield. Its structure was established by IR, positive ESI-MS, 1D and 2D NMR. The presence of -3β-NH2 and -23β-OH groups was achieved through methylation, acetylation or coupling with octadecanoic and undec-11-enoic acids to produce six derivatives (27). Their structures were confirmed by spectroscopic analyses. Solanopubamine and semi-synthetic analogs are investigated for their in vitro cytotoxicity against a panel of human cancer cell lines and anti-microbial activity. Solanopubamine showed good antifungal activity only against Candida albicans and C. tenuis with MIC of 12.5 μg/mL. Semi-synthesized compounds (27) have failed to show anti-tumor and anti-microbial activities.  相似文献   
959.
The use of unconventional synthesis methods in the formation of CaO·2Al2O3 (CA2) is justified because it reduces the formation temperature of the compound. CA2 is formed by classical method at temperatures above 1,400 °C. The polymeric precursor method allows a significant temperature decrease in CA2 synthesis reaching temperatures of 1,000 °C. This paper deals with CA2 synthesis by “citrate” method which is often presented as Pechini method, starting from a mixture of citric acid, ethylene glycol and calcium, and aluminum nitrates. A method based on the formation of a polymeric precursor was also used, starting from a mixture of acrylic acid and nitrates of calcium and aluminum. The results showed a net difference in favor of samples obtained from acrylic acid, which by annealing at 800 °C for 1 h, contain pure CA2. The samples obtained from citric acid, after annealing at 800 °C are amorphous. After annealing at 900 °C in all samples CA2 is single phase.  相似文献   
960.
A novel general method is introduced to predict deflagration temperature of organic energetic compounds containing at least –NNO2, –ONO2, or –CNO2 groups. Deflagration temperature is an important safety parameter in working with dangerous energetic compounds and their environmental problems. It is shown that the contribution of some molecular structure parameters can be used to interpret thermal decomposition of an energetic compound. For 86 energetic materials (corresponding to 102 measured values) with different molecular structures, the new correlation has the root mean square (rms) and the average deviations of 23.8 and 19.0 K, respectively. The new method is also tested for some energetic compounds with complex molecular structures, e.g., two new organic energetic molecules N,N′-bis(1,2,4-triazol-3yl)-4,4′-diamino-2,2′,3,3′,5,5′,6,6′-octanitroazobenzene (BTDAONAB) and 2,4,6-trinitrophloroglucinol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号