首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   3篇
  国内免费   1篇
化学   56篇
力学   8篇
数学   3篇
物理学   31篇
  2022年   5篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   10篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   8篇
  2006年   5篇
  2005年   2篇
  2004年   6篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
41.
42.
The present article describes the synthesis, spectral, coordination and thermal aspects of N,N′-polymethylene bis(1-phenyl-3-methyl-4-trifluoroacetylimino-2-pyrazoline-5-ol)oxovanadium(IV) or copper(II) Schiff base complexes with alkyl backbones ranging from two to four carbons have been characterized on the basis of elemental analysis, magnetic moments, molar conductivity measurements, spectra (FTIR, ESR, UV-Visible, MS), VPO and thermal studies. The vapour pressure osmometry (VPO) and mass spectral studies indicate that the complexes are monomeric. An ESR study of all these complexes of VO(IV) and Cu(II) are consistent with the square pyramidal and square planar geometries of these metal ions, respectively. In addition, the kinetics and thermodynamic parameters for the different thermal decomposition steps of the complexes have been studied employing Horowitz-Metzger and Freemen-Carroll methods.  相似文献   
43.
A selective, precise, and accurate high-performance thin-layer chromatographic (HPTLC) method has been developed for the analysis of L-dopa in Mucuna pruriens seed extract and its formulations. The method involves densitometric evaluation of L-dopa after resolving it by HPTLC on silica gel plates with n-butanol-acetic acid-water (4.0+1.0+1.0, v/v) as the mobile phase. Densitometric analysis of L-dopa was carried out in the absorbance mode at 280 nm. The relationship between the concentration of L-dopa and corresponding peak areas was found to be linear in the range of 100 to 1200 ng/spot. The method was validated for precision (inter and intraday), repeatability, and accuracy. Mean recovery was 100.30%. The relative standard deviation (RSD) values of the precision were found to be in the range 0.64-1.52%. In conclusion, the proposed TLC method was found to be precise, specific and accurate and can be used for identification and quantitative determination of L-dopa in herbal extract and its formulations.  相似文献   
44.
45.
Transition metal [M = VO (IV) and/or Cu (II)] complexes with Schiff base ligand, (Z)‐2‐((2‐hydroxybenzylideneamino)phenol (H2L) have been entrapped in the super cages of zeolite‐Y by Flexible Ligand Method. Synthesized materials have been characterized by preferential physico‐chemical techniques such as inductively coupled plasma optical emission spectroscopy (ICP‐OES), elemental analyses (CHN), fourier transmission infrared spectroscopy (FTIR), electronic and UV‐reflectance spectra, Brunauer–Emmett–Teller (BET) surface area measurements, scanning electron micrographs (SEMs), X‐ray diffraction patterns (XRD) and thermogravimetric analysis (TGA). The catalytic competence of zeolite‐Y entrapped transition metal complexes was examined in Baeyer‐Villiger (BV) oxidation of cyclopentanone using 30% H2O2 as an oxidant beside neat complexes to check the aptitude of heterogeneous catalysis over the homogeneous system. The effect of experimental variables such as mole ratio of substrate to an oxidant, amount of catalyst, reaction time, varying oxidants and solvents on the conversion of cyclopentanone was also tested. Under the optimized reaction conditions, one of the zeolite‐Y entrapped transition metal complex viz. [VO(L)H2O]‐Y [where L = (Z)‐2‐((2‐hydroxybenzylideneamino)phenol] was found to be a potential contender by providing 80.22% conversion of cyclopentanone (TON: 10479.42), and the selectivity towards δ‐valerolactone was 83.56%.  相似文献   
46.
Panjwani  Falak  Dey  Shuvankar  Kongor  Anita  Kumar  Anshu  Panchal  Manthan  Modi  Krunal  Vora  Manoj  kumar  Ashu  Jain  Vinod Kumar 《Journal of fluorescence》2022,32(4):1425-1433

A pyrene functionalized oxacalix[4]arene architecture (DPOC) was utilized as a fluorescence probe for selective recognition of cyanide ions. The receptor DPOC shows excellent selectivity towards cyanide ion with a red shift of 108 nm in absorption band along with a significant change in colour from light yellow to pink. The fluorescence titration experiments further confirm the lower limit of detection as 1.7µM with no significant influences of competing anions. 1 H-NMR titration experiments support the deprotonation phenomena, as the -NH proton disappears upon successive addition of cyanide ions. The DFT calculation also indicates a certain increment of -NH bond length upon interaction with cyanide ions. The spectral properties as well as colour of DPOC-CN? system may be reversed upon the addition of Ag+/ Cu2+ ions up to 5 consecutive cycles. Moreover, DPOC coated “test strips” were prepared for visual detection of cyanide ions.

  相似文献   
47.
New products     
SESAME (Synchrotron Light for Experimental Science and Applications in the Middle East) is an international synchrotron radiation project under the auspices of UNESCO. The physical site is located in Amman, Jordan. At press time, the building was scheduled for completion by March 2007.  相似文献   
48.
A direct and efficient route for the construction of racemic and optically active L-telluromethionine (L-Te-Met) starting from the readily available hydrochloride salt of α-amino-γ-butyrolactone and lithium methyltellurolate is described. The reaction has been successfully scaled up to afford gram quantities of L-Te-Met in 75–80% yield.  相似文献   
49.
A series of novel heterochelates of the type [Fe(An)(L)(H2O)2]?mH2O [where H2An = 4,4′‐(arylmethylene)bis(3‐methyl‐1‐phenyl‐4,5‐dihydro‐1H‐pyrazol‐5‐ol); aryl = 4‐nitrophenyl, m = 1 (H2A1); 4‐chlorophenyl, m = 2 (H2A2); phenyl, m = 2 (H2A3); 4‐hydroxyphenyl, m = 2 (H2A4); 4‐methoxyphenyl, m = 2 (H2A5); 4‐hydroxy‐3‐methoxyphenyl, m = 1.5 (H2A6); 2‐nitrophenyl, m = 1.5 (H2A7); 3‐nitrophenyl, m = 0.5 (H2A8); p‐tolyl, m = 1 (H2A9) and HL = 1‐cyclopropyl‐6‐fluoro‐4‐oxo‐7‐(piperazin‐1‐yl)‐1,4‐dihydroquinoline‐3‐carboxylic acid] were investigated. They were characterized by elemental analysis (FT‐IR, 1H‐ & 13C‐NMR, and electronic) spectra, magnetic measurements and thermal studies. The FAB‐mass spectrum of [Fe(A3)(L)(H2O)2]?2H2O was determined. Magnetic moment and reflectance spectral studies revealed that an octahedral geometry could be assigned to all the prepared heterochelates. Ligands (H2An) and their heterochelates were screened for their in‐vitro antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Serratia marcescens bacterial strains. The kinetic parameters such as order of reaction (n), the energy of activation (Ea), the pre‐exponential factor (A), the activation entropy (ΔS#), the activation enthalpy (ΔH#) and the free energy of activation (ΔG#) are reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
50.
Fluorescence properties of five 4-acyl pyrazolone based hydrazides (H2SBn) and their Fe (III) heterochelates of the type [Fe(SBn)(L)(H2O)]·mH2O [H2SBn = nicotinic acid [1-(3-methyl-5-oxo-1-phenyl-4,5-di hydro-1H-pyrazol-4yl)-acylidene]-hydrazide; where acyl = –CH3, m = 4 (H2SB1); –C6H5, m = 2 (H2SB2); –CH2–CH3, m = 3 (H2SB3); –CH2–CH2–CH3, m = 1.5 (H2SB4); –CH2–C6H5, m = 1.5 (H2SB5) and HL = 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid] were studied at room temperature. The fluorescence spectra of heterochelates show red shift, which may be due to the chelation by the ligands to the metal ion. It enhances ligand ability to accept electrons and decreases the electron transition energy. The kinetic parameters such as order of reaction (n), energy of activation (Ea), entropy (S*), pre-exponential factor (A), enthalpy (H*) and Gibbs free energy (G*) have been reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号