首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   7篇
化学   78篇
数学   9篇
物理学   11篇
  2023年   6篇
  2022年   3篇
  2021年   2篇
  2020年   7篇
  2019年   7篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   5篇
  2013年   2篇
  2012年   9篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   11篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1984年   1篇
排序方式: 共有98条查询结果,搜索用时 31 毫秒
11.
Small organic molecules on ice and water surfaces are ubiquitous in nature and play a crucial role in many environmentally relevant processes. Herein, we combine surface‐specific vibrational spectroscopy and a controllable flow cell apparatus to investigate the molecular adsorption of acetone onto the basal plane of single‐crystalline hexagonal ice with a large surface area. By comparing the adsorption of acetone on the ice/air and the water/air interface, we observed two different types of acetone adsorption, as apparent from the different responses of both the free O?H and the hydrogen‐bonded network vibrations for ice and liquid water. Adsorption on ice occurs preferentially through interactions with the free OH group, while the interaction of acetone with the surface of liquid water appears less specific.  相似文献   
12.
The behavior of hydroxide and hydrated protons, the auto‐ionization products of water, at surfaces is important for a wide range of applications and disciplines. However, it is unknown at which bulk concentration these ions start to become surface active at the water–air interface. Here, we report changes in the D2O–air interface in the presence of excess D+hyd/OD?hyd determined using surface‐sensitive vibrational sum‐frequency generation (SFG) spectroscopy. The onset of the perturbation of the D2O surface occurs at a bulk concentration as low as 2.7±0.2 mm D+hyd. In contrast, a concentration of several hundred mm OD?hyd is required to change the D2O surface. The hydrated proton is thus orders of magnitude more surface‐active than hydroxide at the water–air interface.  相似文献   
13.
Divalent precision glycooligomers terminating in N‐acetylneuraminic acid (Neu5Ac) or 3′‐sialyllactose (3′‐SL) with varying linkers between scaffold and the glycan portions are synthesized via solid phase synthesis for co‐crystallization studies with the sialic acid‐binding major capsid protein VP1 of human Trichodysplasia spinulosa‐associated Polyomavirus. High‐resolution crystal structures of complexes demonstrate that the compounds bind to VP1 depending on the favorable combination of carbohydrate ligand and linker. It is found that artificial linkers can replace portions of natural carbohydrate linkers as long as they meet certain requirements such as size or flexibility to optimize contact area between ligand and receptor binding sites. The obtained results will influence the design of future high affinity ligands based on the structures presented here, and they can serve as a blueprint to develop multivalent glycooligomers as inhibitors of viral adhesion.  相似文献   
14.
Two-dimensional van der Waals heterostructures (2D vdWHs) have recently gained widespread attention because of their abundant and exotic properties, which open up many new possibilities for next-generation nanoelectronics. However, practical applications remain challenging due to the lack of high-throughput techniques for fabricating high-quality vdWHs. Here, we demonstrate a general electrochemical strategy to prepare solution-processable high-quality vdWHs, in which electrostatic forces drive the stacking of electrochemically exfoliated individual assemblies with intact structures and clean interfaces into vdWHs with strong interlayer interactions. Thanks to the excellent combination of strong light absorption, interfacial charge transfer, and decent charge transport properties in individual layers, thin-film photodetectors based on graphene/In2Se3 vdWHs exhibit great promise for near-infrared (NIR) photodetection, owing to a high responsivity (267 mA W−1), fast rise (72 ms) and decay (426 ms) times under NIR illumination. This approach enables various hybrid systems, including graphene/In2Se3, graphene/MoS2 and graphene/MoSe2 vdWHs, providing a broad avenue for exploring emerging electronic, photonic, and exotic quantum phenomena.  相似文献   
15.
Targeted synthesis of kagome ( kgm ) topologic 2D covalent organic frameworks remains challenging, presumably due to the severe dependence on building units and synthetic conditions. Herein, two isomeric “two-in-one” monomers with different lengths of substituted arms based on naphthalene core (p-Naph and m-Naph) are elaborately designed and utilized for the defined synthesis of isomeric kgm Naph-COFs. The two isomeric frameworks exhibit splendid crystallinity and showcase the same chemical composition and topologic structure with, however, different pore channels. Interestingly, C60 is able to uniformly be encapsulated into the triangle channels of m-Naph-COF via in situ incorporation method, while not the isomeric p-Naph-COF, likely due to the different pore structures of the two isomeric COFs. The resulting stable C60@m-Naph-COF composite exhibits much higher photoconductivity than the m-Naph-COF owing to charge transfer between the conjugated skeletons and C60 guests.  相似文献   
16.
Structurally defined graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices. Low band gap (<1 eV) GNRs are particularly important when considering the Schottky barrier in device performance. Here, we demonstrate the first solution synthesis of 8-AGNRs through a carefully designed arylated polynaphthalene precursor. The efficiency of the oxidative cyclodehydrogenation of the tailor-made polymer precursor into 8-AGNRs was validated by FT-IR, Raman, and UV/Vis-near-infrared (NIR) absorption spectroscopy, and further supported by the synthesis of naphtho[1,2,3,4-ghi]perylene derivatives ( 1 and 2 ) as subunits of 8-AGNR , with a width of 0.86 nm as suggested by the X-ray single crystal analysis. Low-temperature scanning tunneling microscopy (STM) and solid-state NMR analyses provided further structural support for 8-AGNR . The resulting 8-AGNR exhibited a remarkable NIR absorption extending up to ∼2400 nm, corresponding to an optical band gap as low as ∼0.52 eV. Moreover, optical-pump TeraHertz-probe spectroscopy revealed charge-carrier mobility in the dc limit of ∼270 cm2 V−1 s−1 for the 8-AGNR .  相似文献   
17.
We report investigations of the vibrational dynamics of water molecules at the water–air and at the water–lipid interface. Following vibrational excitation with an intense femtosecond infrared pulse resonant with the O–H stretch vibration of water, we follow the subsequent relaxation processes using the surface-specific spectroscopic technique of sum frequency generation. This allows us to selectively follow the vibrational relaxation of the approximately one monolayer of water molecules at the interface. Although the surface vibrational spectra of water at the interface with air and lipids are very similar, we find dramatic variations in both the rates and mechanisms of vibrational relaxation. For water at the water–air interface, very rapid exchange of vibrational energy occurs with water molecules in the bulk, and this intermolecular energy transfer process dominates the response. For membrane-bound water at the lipid interface, intermolecular energy transfer is suppressed, and intramolecular relaxation dominates. The difference in relaxation mechanism can be understood from differences in the local environments experienced by the interfacial water molecules in the two different systems.  相似文献   
18.
19.
Whereas there is increasing evidence for ion‐induced protein destabilization through direct ion–protein interactions, the strength of the binding of anions to proteins relative to cation–protein binding has remained elusive. In this work, the rotational mobility of a model amide in aqueous solution was used as a reporter for the interactions of different anions with the amide group. Protein‐stabilizing salts such as KCl and KNO3 do not affect the rotational mobility of the amide. Conversely, protein denaturants such as KSCN and KI markedly reduce the orientational freedom of the amide group. Thus these results provide evidence for a direct denaturation mechanism through ion–protein interactions. Comparing the present findings with results for cations shows that in contrast to common belief, anion–amide binding is weaker than cation–amide binding.  相似文献   
20.
Laser-induced desorption of water molecules from nanometer amorphous solid water films supported on a single-crystal platinum substrate is reported. A femtosecond laser pulse creates hot substrate electrons, which are injected into the water layer, resulting in significant desorption at the water-vacuum interface. The dependence of the desorption yield on film thickness and results for isotopic spacer and capping layers reveal that the desorbing water originates from relatively deep down into the water layer, i.e., from several nanometers below the surface. This is proposed to be the result of cooperative electronic effects resulting from the high electron densities in the thin water film, which cause a transient destabilization of the water H-bonded network. Motion of excited water molecules through the layer is enabled by mixing within the layer on ultrafast timescales during the desorption process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号