首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   54篇
化学   620篇
晶体学   4篇
力学   1篇
数学   67篇
物理学   71篇
  2023年   4篇
  2022年   7篇
  2021年   14篇
  2020年   17篇
  2019年   18篇
  2018年   5篇
  2017年   4篇
  2016年   32篇
  2015年   20篇
  2014年   28篇
  2013年   32篇
  2012年   40篇
  2011年   75篇
  2010年   30篇
  2009年   31篇
  2008年   48篇
  2007年   52篇
  2006年   53篇
  2005年   48篇
  2004年   35篇
  2003年   20篇
  2002年   29篇
  2001年   7篇
  2000年   9篇
  1999年   5篇
  1998年   3篇
  1997年   8篇
  1996年   14篇
  1995年   8篇
  1994年   5篇
  1993年   5篇
  1992年   8篇
  1991年   5篇
  1990年   8篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   6篇
  1984年   8篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1972年   1篇
  1960年   1篇
  1891年   1篇
排序方式: 共有763条查询结果,搜索用时 31 毫秒
31.
The local aromaticity of the six-membered rings in three series of benzenoid compounds, namely, the [n]acenes, [n]phenacenes, and [n]helicenes for n = 1-9, has been assessed by means of three probes of local aromaticity based on structural, magnetic, and electron delocalization properties. For [n]acenes our analysis shows that the more reactive inner rings are more aromatic than the outer rings. For [n]phenacenes, all indicators of aromaticity show that the external rings are the most aromatic. From the external to the central ring, the local aromaticity varies in a damped alternate way. The trends for the [n]helicene series are the same as those found for [n]phenacenes. Despite the departure from planarity in [n]helicenes, only a very slight loss of aromaticity is detected in [n]helicenes as compared to the corresponding [n]phenacenes. Finally, because of magnetic couplings between superimposed six-membered rings in the higher members of the [n]helicenes series, we have demonstrated that the NICS indicator of aromaticity artificially increases the local aromaticity of their most external rings.  相似文献   
32.
The conformation of several trans-2,3-diaryloxy-1,4-dioxanes has been studied using 1H NMR techniques. Trans-2,3-bis(4-nitrophenoxy)-1,4-dioxane and trans-2,3-bis(4-methoxyphenoxy)-1,4-dioxane have been found to be predominantly ( ≈98%) in diaxial conformation in CDCl3). On the other hand, trans-2,3-bis(2,6-dimethylphenoxy)-1,4-dioxane exists in the same conditions as a 66:33 mixture of diaxial and diequatorial conformers. An explanation based on the fulfilment of the exo-anomeric effect is provided.  相似文献   
33.
New families of enantiopure bis(oxazolines) with 4,5-trans (5 a-g) or 4,5-cis (6 c) stereochemistry at the individual rings have been prepared in high yield. Their eta(3)-allyl palladium complexes (8 a-g, 9 c and 10) have been used as catalytic precursors in allylic alkylation reactions with excellent enantioselectivities (up to 96 %) for the trans oxazoline derivatives, while Pd/6 c system was inactive. NMR studies on palladium eta(3)-1,3-diphenylallyl intermediates (11 a, c and e) showed the presence of syn/syn- and syn/anti-allyl isomers in solution; this resembles the first example of eta(3)-eta(1)-eta(3) isomerism in Pd allylic complexes containing bis(oxazolines) derived from malonic acid.  相似文献   
34.
35.
36.
The origin of the experimentally known preference for [6,6] over [5,6] bonds in cycloaddition reactions involving C60 has been computationally explored. To this end, the Diels–Alder reaction between cyclopentadiene and C60 has been analysed by means of the recently introduced activation strain model of reactivity in combination with the energy decomposition analysis method. Other issues, such as the aromaticity of the corresponding transition states, have also been considered. These results indicate that the major factor controlling the observed regioselectivity is the more stabilising interaction between the deformed reactants in the [6,6] reaction pathway along the entire reaction coordinate.  相似文献   
37.
Porphyrin–fullerene dyads are promising candidates for organic photovoltaic devices. The electron-transfer (ET) properties of the molecular devices depend significantly on the mutual position of the donor and acceptor. Recently, a new type of molecular isomerism (akamptisomerism) has been discovered. In the present study, we explore how photoinduced ET can be modulated by passing from one akamptisomer to another. To this aim, four akamptisomers of the quinoxalinoporphyrin–[60]fullerene complex are selected for computational study. The most striking finding is that, depending on the isomer, the porphyrin unit in the dyad can act as either electron donor or electron acceptor. Thus, the stereoisomeric diversity allows one to change the direction of ET between the porphyrin and fullerene moieties. To understand the effect of akamptisomerism on the photoinduced ET processes, a detailed analysis of initial and final states involved in the ET is performed. The computed rate for charge separation is estimated to be in the region of 1–10 ns−1. The formation of a long-living quinoxalinoporphyrin anion radical species is predicted.  相似文献   
38.
39.
Metalla-bis-dicarbollides, such as the cobalta-bis-dicarbollide (COSAN) anion [Co(C2B9H11)2], have attracted much attention in biology but a deep understanding of their interactions with cell components is still missing. For this purpose, we studied the interactions of COSAN with the glucose moiety, which is ubiquitous at biological interfaces. Octyl-glucopyranoside surfactant (C8G1) was chosen as a model as it self-assembles in water and creates a hydrated glucose-covered interface. At low COSAN content and below the critical micellar concentration (CMC) of C8G1, COSAN binds to C8G1 monomers through the hydrophobic effect. Above the CMC of C8G1, COSAN adsorbs onto C8G1 micelles through the superchaotropic effect. At high COSAN concentrations, COSAN disrupts C8G1 micelles and the assemblies become similar to COSAN micelles but with a small amount of solubilized C8G1. Therefore, COSAN binds in a versatile way to C8G1 through either the hydrophobic or superchaotropic effect depending on their relative concentrations.  相似文献   
40.
The metal‐directed supramolecular synthetic approach has paved the way for the development of functional nanosized molecules. In this work, we report the preparation of the new nanocapsule 3? (CF3SO3)8 with a A4B2 tetragonal prismatic geometry, where A corresponds to the dipalladium hexaazamacrocyclic complex Pd‐1 , and B corresponds to the tetraanionic form of palladium 5,10,15,20‐tetrakis(4‐carboxyphenyl)porphyrin ( 2 ). The large void space of the inner cavity and the supramolecular affinity for guest molecules towards porphyrin‐based hosts converts this nanoscale molecular 3D structure into a good candidate for host–guest chemistry. The interaction between this nanocage and different guest molecules has been studied by means of NMR, UV/Vis, ESI‐MS, and DOSY experiments, from which highly selective molecular recognition has been found for anionic, planar‐shaped π guests with association constants (Ka) higher than 109 M ?1, in front of non‐interacting aromatic neutral or cationic substrates. DFT theoretical calculations provided insights to further understand this strong interaction. Nanocage 3? (CF3SO3)8 can not only strongly host one single molecule of M(dithiolene)2 complexes (M=Au, Pt, Pd, and Ni), but also can finely tune their optical and redox properties. The very simple synthesis of both the supramolecular cage and the building blocks represents a step forward for the development of polyfunctional supramolecular nanovessels, which offer multiple applications as sensors or nanoreactors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号