首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2855篇
  免费   59篇
  国内免费   3篇
化学   1888篇
晶体学   28篇
力学   102篇
数学   353篇
物理学   546篇
  2023年   22篇
  2022年   84篇
  2021年   79篇
  2020年   42篇
  2019年   52篇
  2018年   47篇
  2017年   51篇
  2016年   86篇
  2015年   73篇
  2014年   104篇
  2013年   166篇
  2012年   162篇
  2011年   202篇
  2010年   116篇
  2009年   153篇
  2008年   185篇
  2007年   151篇
  2006年   134篇
  2005年   115篇
  2004年   108篇
  2003年   81篇
  2002年   67篇
  2001年   43篇
  2000年   39篇
  1999年   34篇
  1998年   35篇
  1997年   21篇
  1996年   30篇
  1995年   37篇
  1994年   23篇
  1993年   15篇
  1992年   27篇
  1991年   10篇
  1990年   9篇
  1989年   14篇
  1988年   11篇
  1987年   12篇
  1986年   13篇
  1985年   28篇
  1984年   16篇
  1983年   26篇
  1982年   22篇
  1981年   29篇
  1980年   24篇
  1979年   18篇
  1978年   15篇
  1976年   12篇
  1974年   10篇
  1972年   8篇
  1969年   8篇
排序方式: 共有2917条查询结果,搜索用时 15 毫秒
181.
Sugarcane bagasse is an agroindustrial residue generated in large amounts in Brazil. This biomass can be used for the production of cellulases, aiming at their use in second-generation processes for bioethanol production. Therefore, this work reports the ability of a fungal strain, Trichoderma harzianum IOC-4038, to produce cellulases on a novel material, xylan free and cellulose rich, generated from sugarcane bagasse, named partially delignified cellulignin. The extract produced by T. harzianum under submerged conditions reached 745, 97, and 559 U L−1 of β-glucosidase, FPase, and endoglucanase activities, respectively. The partial characterization of this enzyme complex indicated, using a dual analysis, that the optimal pH values for the biocatalysis ranged from 4.9 to 5.2 and optimal temperatures were between 47 and 54 °C, depending on the activity studied. Thermal stability analyses revealed no significant decrease in activity at 37 °C during 23 h of incubation. When compared to model strains, Aspergillus niger ATCC-16404 and Trichoderma reesei RutC30, T. harzianum fermentation was faster and its extract showed a better balanced enzyme complex, with adequate characteristics for its application in simultaneous saccharification and fermentation processes.  相似文献   
182.
Hybrid three-dimensional electrodes produced from microcrystalline boron-doped diamond (BDD) and/or nanocrystalline diamond films were grown on porous titanium (Ti) substrate by hot filament chemical vapor deposition (HFCVD) technique. Powder metallurgy technique was used to obtain the Ti substrates provided by interconnected and open pores among its volume. Diamond growth parameters were optimized in order to provide the entire substrate surface covering including the deeper surfaces, pore bottoms, and walls. The morphology and structure of these electrodes were studied by scanning electron microscopy (SEM) and visible Raman spectroscopy techniques, respectively. Electrochemical response was characterized by cyclic voltammetry measurements. Results showed a wide working potential window and low background current characteristic of the diamond electrodes. The kinetic parameters also pointed out to a quasi-reversible behavior for these hybrid three-dimensional diamond/Ti electrodes.  相似文献   
183.
Metallic Zn nanowires have been synthesized by a new carbothermal reduction route in which ZnO and Eucalyptus sp. tar pitch were used as source materials. This simple practical procedure was capable of producing Zn nanowires in large quantities without reoxidation. This process was carried out in inert atmosphere, without vacuum or catalyst, at temperatures (800–900 °C) lower than those required in the carbothermal reduction of ZnO with graphite. A comparative study was performed using graphite that is traditionally used as a ZnO reducer, under the same experimental conditions, however, no reaction was observed. The new process involves the pyrolysis of biopitch to obtain a highly reactive coke and the reduction of ZnO with the release of Zn(v) for the growth of Zn(s) nanowires. The resulting Zn nanowires were characterized by X-ray diffractometry, energy-dispersive spectroscopy and scanning electron microscopy. Differential thermal analysis and thermogravimetric analysis coupled with infrared analysis techniques were used in an effort to understand the underlying mechanism and establish the best ratio biopitch/ZnO to be used. This paper presents the characterization of the as-synthesized nanowires and discusses the main reactions involved in their production.  相似文献   
184.
The reaction of cis-[RuCl2(P–P)(N–N)] type complexes (P–P = 1,4-bis(diphenylphosphino)butane or (1,1′-diphenylphosphino)ferrocene; N–N = 2,2′-bipyridine or 1,10-phenantroline) with monodentate ligands (L), such as 4-methylpyridine, 4-phenylpyridine and benzonitrile forms [RuCl(L)(P–P)(N–N)]+ species. Upon characterization of the isolated compounds by elemental analysis, 31P{1H} NMR and X-ray crystallography it was found out that the type of the L ligand determines its position in relation to the phosphorus atom. While pyridine derivatives like 4-methylpyridine and 4-phenylpyridine coordinate trans to the phosphorus atom, the benzonitrile ligand (bzCN), a good π acceptor, coordinates trans to the nitrogen atom. A 31P{1H} NMR experiment following the reaction of the precursor cis-[RuCl2(dppb)(phen)] with the benzonitrile ligand shows that the final position of the entering ligand in the complex is better defined as a consequence of the competitive effect between the phosphorus atom and the cyano-group from the benzonitrile moiety and not by the trans effect. In this case, the benzonitrile group is stabilized trans to one of the nitrogen atoms of the N–N ligand. A differential pulse voltammetry experiment confirms this statement. In both experiments the [RuCl(bzCN)(dppb)(phen)]PF6 species with the bzCN ligand positioned trans to a phosphorus atom of the dppb ligand was detected as an intermediate complex.  相似文献   
185.
Ten international laboratories participated in an inter-laboratory comparison of a fossil bone composite with the objective of producing a matrix and structure-matched reference material for studies of the bio-mineralization of ancient fossil bone. We report the major and trace element compositions of the fossil bone composite, using in-situ method as well as various wet chemical digestion techniques.For major element concentrations, the intra-laboratory analytical precision (%RSDr) ranges from 7 to 18%, with higher percentages for Ti and K. The %RSDr are smaller than the inter-laboratory analytical precision (%RSDR; <15-30%). Trace element concentrations vary by ∼5 orders of magnitude (0.1 mg kg−1 for Th to 10,000 mg kg−1 for Ba). The intra-laboratory analytical precision %RSDr varies between 8 and 45%. The reproducibility values (%RSDR) range from 13 to <50%, although extreme value >100% was found for the high field strength elements (Hf, Th, Zr, Nb). The rare earth element (REE) concentrations, which vary over 3 orders of magnitude, have %RSDr and %RSDR values at 8-15% and 20-32%, respectively. However, the REE patterns (which are very important for paleo-environmental, taphonomic and paleo-oceanographic analyses) are much more consistent.These data suggest that the complex and unpredictable nature of the mineralogical and chemical composition of fossil bone makes it difficult to set-up and calibrate analytical instruments using conventional standards, and may result in non-spectral matrix effects. We propose an analytical protocol that can be employed in future inter-laboratory studies to produce a certified fossil bone geochemical standard.  相似文献   
186.
We report the use of a calibration transfer strategy to correct for drift in the quantitative sensitivity of a portable quadrupole mass spectrometer (QMS) aimed at process monitoring applications. Gas mixtures of CH4/Ar/C2H6/CO2 were studied with calibration phase measurements made of the pure gases for a univariate analysis and of 40 multi-component mixtures for a multivariate approach. To evaluate calibrations, test set spectra of a CH4/Ar/C2H6/CO2 gas mixture were recorded bi-weekly over a period of 12 months. As part of the strategy a standard of pure argon was measured during both calibration and test phases so that correction factors could be calculated for each measurement day. It was shown that in the absence of a calibration transfer strategy quantifications of test set spectra could be inaccurate by more than an order of magnitude over 12 months. Furthermore, due to the effects of drift in the sensitivity over the 6 days required to record the training set in the calibration phase it was found that the multivariate analysis quantified test spectra less accurately than the univariate analysis. However, by applying the calibration transfer strategy across all measurements (both calibration and test phases) it was shown that the errors in prediction using the multivariate analysis previously seen after 2 weeks were not observed until approximately 12 months later.  相似文献   
187.
The controlled release of medicaments remains the most convenient way of drug delivery. Therefore, a wide variety of reports can be found in the open literature dealing with drug delivery systems. In particular, the use of nano- and microparticles devices has received special attention during the past two decades. PLA and its copolymers with GA and/or PEG appear as the preferred substrates to fabricate these devices. The methods of fabrication of these particles will be reviewed in this article, describing in detail the experimental variables associated with each one with regard to the influence of them on the performance of the particles as drug carriers. An analysis of the relationship between the method of preparation and the kind of drug to encapsulate is also included. Furthermore, certain issues involved in the addition of other monomeric substrates than lactic acid to the particles formulation as well as novel devices, other than nano- and microparticles, will be discussed in the present work considering the published literature available.  相似文献   
188.
189.
The synthesis, characterization and in situ catalytic performance of new unsymmetric N,N′‐disubstituted imidazolium‐based dicationic salts in Mizoroki–Heck coupling of acrylates with aryl bromides under aerobic conditions are described. A series of flexible dicationic salts with varying steric and electronic properties were synthesized in good to excellent yields. All the salts were well characterized using spectroscopic techniques. X‐ray diffraction analysis of two salts with the same dicationic backbone and different counter anions shows that the ligand adopts two different conformations which are influenced by the nature of the anion. Thus, the ligand is capable of changing its conformation according to the change in environment due to its flexible nature. All the synthesized imidazolium salts were found to be active in in situ palladium‐catalysed Mizoroki–Heck coupling under aerobic conditions. Amongst the salts, the hydroxyl‐functionalized imidazolium salt, incorporating the features of both bidentate chelating O,O ligand and carbene, shows the maximum catalytic activity. A variety of aryl and heteroaryl methyl and ethyl cinnamates were synthesized using these imidazolium salts as preligands. In addition, NMR studies confirm in situ generation of normal N‐heterocyclic carbenes from the C‐2 position of imidazol‐2‐ylidene ring. The mercury poisoning test was also performed to ascertain the nature of catalytically active palladium species. Aerobic conditions, low catalytic loading (0.5 mol%), shorter reaction times, broad functional group tolerance and good to excellent isolated yields are some of the significant features of the novel catalytic systems described here. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
190.
Four lignin samples were extracted from sugar cane bagasse using four different alcohols (methanol, ethanol, n-propanol, and 1-butanol) via the organosolv-CO2 supercritical pulping process. Langmuir films were characterized by surface pressure vs mean molecular area (Pi-A) isotherms to exploit information at the molecular level carrying out stability tests, cycles of compression/expansion (hysteresis), subphase temperature variations, and metallic ions dissolved into the water subphase at different concentrations. Briefly, it was observed that these lignins are relatively stable on the water surface when compared to those obtained via different extraction processes. Besides, the Pi-A isotherms are shifted to smaller molecular areas at higher subphase temperatures and to larger molecular areas when the metallic ions are dissolved into the subphase. The results are related to the formation of stable aggregates (domains) onto the water subphase by these lignins, as shown in the Pi-A isotherms. It was found as well that the most stable lignin monolayer onto the water subphase is that extracted with 1-butanol. Homogeneous Langmuir-Blodgett (LB) films of this lignin could be produced as confirmed by UV-vis absorption spectroscopy and the cumulative transfer parameter. In addition, FTIR analysis showed that this lignin LB film is structured in a way that the phenyl groups are organized preferentially parallel to the substrate surface. Further, these LB films were deposited onto gold interdigitated electrodes and ITO and applied in studies involving the detection of Cd+2 ions in aqueous solutions at low concentration levels through impedance spectroscopy and electrochemical measurements. FTIR spectroscopy was carried out before and after soaking the thin films into Cd+2 aqueous solutions, revealing a possible physical interaction between the lignin phenyl groups and the heavy metal ions. The importance of using nanostructured systems is demonstrated as well by comparing both LB and cast films.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号