首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80754篇
  免费   431篇
  国内免费   381篇
化学   26028篇
晶体学   834篇
力学   6832篇
数学   32219篇
物理学   15653篇
  2022年   63篇
  2021年   71篇
  2020年   72篇
  2019年   63篇
  2018年   10467篇
  2017年   10288篇
  2016年   6154篇
  2015年   925篇
  2014年   414篇
  2013年   496篇
  2012年   4027篇
  2011年   10719篇
  2010年   5778篇
  2009年   6164篇
  2008年   6761篇
  2007年   8924篇
  2006年   387篇
  2005年   1417篇
  2004年   1640篇
  2003年   2056篇
  2002年   1106篇
  2001年   295篇
  2000年   340篇
  1999年   172篇
  1998年   207篇
  1997年   156篇
  1996年   211篇
  1995年   127篇
  1994年   89篇
  1993年   113篇
  1992年   64篇
  1991年   77篇
  1990年   67篇
  1989年   77篇
  1988年   70篇
  1987年   71篇
  1986年   67篇
  1985年   53篇
  1984年   53篇
  1983年   43篇
  1982年   48篇
  1981年   46篇
  1980年   62篇
  1979年   56篇
  1978年   50篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Two-dimensional (2D) materials with robust ferromagnetism have played a key role in realizing nextgeneration spin-electronic devices, but many challenges remain, especially the lack of intrinsic ferromagnetic behavior in almost all 2D materials. Here, we highlight ultrathin Mn3O4 nanosheets as a new 2D ferromagnetic material with strong magnetocrystalline anisotropy. Magnetic measurements along the in-plane and out-of-plane directions confirm that the out-of-plane direction is the easy axis. The 2D-confined environment and Rashba-type spin-orbit coupling are thought to be responsible for the magnetocrystalline anisotropy. The robust ferromagnetism in 2D Mn3O4 nanosheets with magnetocrystalline anisotropy not only paves a new way for realizing the intrinsic ferromagnetic behavior in 2D materials but also provides a novel candidate for building next-generation spin-electronic devices.  相似文献   
952.
Plasmonic waveguides and conventional dielectric waveguides have favorable characteristics in photonic integrated circuits. Typically, plasmonic waveguides can provide subwavelength mode confinement, as shown by their small mode area, whereas conventional dielectric waveguides guide light with low loss, as shown by their long propagation length. However, the simultaneous achievement of subwavelength mode confinement and low-loss propagation remains limited. In this paper, we propose a novel design of an alldielectric bowtie waveguide, which simultaneously exhibits both subwavelength mode confinement and theoretically lossless propagation. Contrary to traditional dielectric waveguides, where the guidance of light is based on total internal reflection, the principle of the all-dielectric bowtie waveguide is based on the combined use of the conservation of the normal component of the electric displacement and the tangential component of the electric field, such that it can achieve a mode area comparable to its plasmonic counterparts. The mode distribution in the all-dielectric bowtie waveguide can be precisely controlled by manipulating the geometric design. Our work shows that it is possible to achieve extreme light confinement by using dielectric instead of lossy metals.  相似文献   
953.
954.
C/FeOF/FeF3 nanocomposite was synthesized by a facile in situ partial oxidation method. High-resolution transmission electron microscopy (HR-TEM) showed a special texture comprised of interpenetrating nanodomains of FeOF and FeF3. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements revealed that the introduction of nanodomain FeOF enhanced both the electronic and ionic conductivity of the composite material. Therefore, the improvement of electron and lithium-ion dynamics resulted in the significant enhancement of the electrochemical performances of the material at ambient temperature. At a current density of 20 mA g?1 within potential range 1.5–4.5 V, the specific capacities of the first ten circles were maintained at about 400 mAh g?1 . This material also exhibited excellent cycling capacity retention capability especially for high C rates. When the current density further increased to 100 and 200 mA g?1, a steady capacity of 80 and 60 mAh g?1 was observed, respectively. Furthermore, nearly no capacity loss was observed for the followed cycles. The discharge platforms based on intercalation and conversion reaction were also heightened by about 0.4 V, which increased the contribution of high voltage capacities. Compared to C/FeF3, C/FeOF/FeF3 is showing more of capacitive behavior, which also contributes to the high specific capacity delivered and is believed to be closely related to the enlarged nanodomain interfaces between two electrochemical active materials. An expansion-cracking-oxidation mechanism was proposed to explain the formation of this interpenetrating nanodomains of FeOF and FeF3.  相似文献   
955.
Morphologies and structures of M-N-C catalysts are the key factor for controlling the formation of catalytic active sites, which are directly connected with the electrocatalytic activities for oxygen reduction reaction (ORR). By combining different metal sources (metal-free, Co, and Fe) with polyaniline (PANI) and para-phenylenediamine functionalized GO (PGO), morphologies and structures are tuned to accelerate the ORR activity. Compared with metal-free catalyst, metal-containing catalysts show better ORR performance because of the possible synergistic effect between metal and N atoms. In particular, the improved ORR activity of Fe-PANI-PGO catalyst is obtained by rotating disc electrode (RDE) at 1600 rpm in 0.1 M KOH electrolyte. The Fe-PANI-PGO electrocatalyst has the enhanced half-wave potential of 0.89 V and the high stability with only decreasing 7 mV of half-wave potential after 10,000 cycles, implying increased number and strengthened structures of active sites. Combined with various means of characterization, advantageous morphologies and structures including large electrochemically active surface area, high graphitization degree, and thick carbon structure with more pyridinic nitrogen boned with metal atoms can greatly enhance the ORR activity and stability of the catalyst.
Graphical abstract
  相似文献   
956.
Lithium/sulfur (Li/S) batteries have a high theoretical specific capacity of 1672 mAh g?1. However, the insulation of the elemental sulfur and polysulfides dissolution could result in poor cycling performance of Li/S batteries, thus restricting the industrialization process. Here, we prepared sulfur-based composite by thermal treatment. The modified acetylene black (H-AB) was used as a carrier to fix sulfur. The H-AB could interact with polysulfides and reduce the dissolution of polysulfides in the electrolyte. Nonetheless, the conductivity of H-AB relatively reduced. So the conductivity of the sulfur electrode would be improved by the addition of the conductive agent (AB). In this paper, the different content of conductive agent (AB) in the sulfur electrode was studied. The electrochemical tests indicate that the discharge capacity of the sulfur electrode can be increased by increasing the conductive agent (AB) content. The H-AB@S composite electrode with 30 wt.% conductive agent has the best cycle property. The discharge capacity still remains at 563 mAh g?1 after 100 cycles at 0.1 C, which is 71% retention of the highest discharge capacity.  相似文献   
957.
The lithiated transition metal oxide precursor (LNCMO) with typical α-NaFeO2 structure and imperfect crystallinity, obtained from a hydrothermal process, was pretreated at 500 °C and then subjected to sintering at 800–920 °C to synthesize the ternary layered LiNi0.5Co0.2Mn0.3O2 (NCM523). X-ray diffraction (XRD), scanning electron microscope (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge/discharge testing were used for investigating the effect of the high-temperature crystallization on the properties of the NCM523 cathode materials. The results show that the materials heated at 880–900 °C possess superior cation ordering, perfect crystallinity, and excellent electrochemical performances, among which the material heated at 900 °C delivers better performances, with the initial discharge capacity of 152.6 mAh g?1 at 0.5 C over 3.0 to 4.3 V and the capacity retention of 95.5% after 50 cycles. Furthermore, the effect of the high-temperature crystallization on the Li+ diffusion coefficient, potential polarization, and electrochemical resistance are discussed.  相似文献   
958.
Electrospraying-based synthesis of NiCo2O4 (NCO-ES) nanoparticles that exhibit long cycle life and high rate capability is reported. The results are compared with a conventionally prepared NiCo2O4 sample by direct annealing (NCO-DA). The structure and morphology of NCO-ES and NCO-DA nanoparticles have been characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy to confirm the size, morphology, structure, and surface chemistry of the as-prepared samples. Electrochemical testing established that the NCO-ES sample displayed enhanced Li-ion storage performance. The NCO-ES delivered a discharge capacity of almost 370 mAh/g at the end of 50 cycles at 1C rate (890 mA/g) while only 180 mAh/g was retained for the NCO-DA sample at the same condition. At a high rate of 5C (4450 mA/g), NCO-ES electrodes delivered a stabilized specific capacity of 225 mAh/g with almost 100% Coulombic efficiency over 1000 cycles. Its rate capability and cycle life were found to be superior to NCO-DA electrodes. The nanoscale grain boundaries in the NCO-ES sample enhanced the lithium-ion diffusion and enabled high rate capability. The impedance analysis at different stages of lithiation/delithiation indicates a lower impedance and better kinetics as one of the reasons for better performance of the NCO-ES sample.  相似文献   
959.
Fluoroethylene carbonate (FEC) is investigated as the electrolyte additive to improve the electrochemical performance of high voltage LiNi0.6Co0.2Mn0.2O2 cathode material. Compared to LiNi0.6Co0.2Mn0.2O2/Li cells in blank electrolyte, the capacity retention of the cells with 5 wt% FEC in electrolytes after 80 times charge-discharge cycle between 3.0 and 4.5 V significantly improve from 82.0 to 89.7%. Besides, the capacity of LiNi0.6Co0.2Mn0.2O2/Li only obtains 12.6 mAh g?1 at 5 C in base electrolyte, while the 5 wt% FEC in electrolyte can reach a high capacity of 71.3 mAh g?1 at the same rate. The oxidative stability of the electrolyte with 5 wt% FEC is evaluated by linear sweep voltammetry and potentiostatic data. The LSV results show that the oxidation potential of the electrolytes with FEC is higher than 4.5 V vs. Li/Li+, while the oxidation peaks begin to appear near 4.3 V in the electrolyte without FEC. In addition, the effect of FEC on surface of LiNi0.6Co0.2Mn0.2O2 is elucidated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The analysis result indicates that FEC facilitates the formation of a more stable surface film on the LiNi0.6Co0.2Mn0.2O2 cathode. The electrochemical impedance spectroscopy (EIS) result evidences that the stable surface film could improve cathode electrolyte interfacial resistance. These results demonstrate that the FEC can apply as an additive for 4.5 V high voltage electrolyte system in LiNi0.6Co0.2Mn0.2O2/Li cells.  相似文献   
960.
Three-dimensional hierarchical Co3O4@C hollow microspheres (Co3O4@C HSs) are successfully fabricated by a facile and scalable method. The Co3O4@C HSs are composed of numerous Co3O4 nanoparticles uniformly coated by a thin layer of carbon. Due to its stable 3D hierarchical hollow structure and uniform carbon coating, the Co3O4@C HSs exhibit excellent electrochemical performance as an anode material for lithium-ion batteries (LIBs). The Co3O4@C HSs electrode delivers a high reversible specific capacity, excellent cycling stability (1672 mAh g?1 after 100 cycles at 0.2 A g?1 and 842.7 mAh g?1 after 600 cycles at 1 A g?1), and prominent rate performance (580.9 mAh g?1 at 5 A g?1). The excellent electrochemical performance makes this 3D hierarchical Co3O4@C HS a potential candidate for the anode materials of the next-generation LIBs. In addition, this simple synthetic strategy should also be applicable for synthesizing other 3D hierarchical metal oxide/C composites for energy storage and conversion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号