首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4516篇
  免费   134篇
  国内免费   19篇
化学   3261篇
晶体学   36篇
力学   93篇
数学   610篇
物理学   669篇
  2024年   4篇
  2023年   29篇
  2022年   83篇
  2021年   113篇
  2020年   78篇
  2019年   69篇
  2018年   62篇
  2017年   66篇
  2016年   165篇
  2015年   109篇
  2014年   125篇
  2013年   268篇
  2012年   342篇
  2011年   370篇
  2010年   201篇
  2009年   154篇
  2008年   318篇
  2007年   297篇
  2006年   246篇
  2005年   289篇
  2004年   218篇
  2003年   191篇
  2002年   158篇
  2001年   57篇
  2000年   53篇
  1999年   32篇
  1998年   42篇
  1997年   30篇
  1996年   67篇
  1995年   28篇
  1994年   30篇
  1993年   39篇
  1992年   21篇
  1991年   30篇
  1990年   35篇
  1989年   24篇
  1988年   25篇
  1987年   29篇
  1986年   15篇
  1985年   28篇
  1984年   20篇
  1983年   12篇
  1982年   21篇
  1981年   12篇
  1980年   13篇
  1979年   14篇
  1978年   6篇
  1977年   6篇
  1976年   3篇
  1974年   6篇
排序方式: 共有4669条查询结果,搜索用时 15 毫秒
191.
Based on the crystal structures of human vitamin D receptor (hVDR) bound to 1α,25-dihydroxy-vitamin D(3) (1,25 D) and superagonist ligands, we previously designed new superagonist ligands with a tetrahydrofuran ring at the side chain that optimize the aliphatic side-chain conformation through an entropy benefit. Following a similar strategy, four novel vitamin D analogues with aromatic furan side chains (3a, 3b, 4a, 4b) have now been developed. The triene system has been constructed by an efficient stereoselective intramolecular cyclization of an enol triflate (A-ring precursor) followed by a Suzuki-Miyaura coupling of the resulting intermediate with an alkenyl boronic ester (CD-side chain, upper fragment). The furan side chains have been constructed by gold chemistry. These analogues exhibit significant pro-differentiation effects and transactivation potency. The crystal structure of 3a in a complex with the ligand-binding domain of hVDR revealed that the side-chain furanic ring adopts two conformations.  相似文献   
192.
Molecularly imprinted solid-phase extraction (MISPE) combined with MEKC was used for clean-up, preconcentration and determination of digoxin in the presence of its aglycon digoxin (digoxigenin) in human urine samples. In addition, the use of an in-capillary sample concentration electrophoretic technique by sweeping was investigated to enhance the concentration sensitivity in MEKC. The highly selective, fast and effective sample pretreatment by MISPE along with the preconcentration by sweeping could overcome the low sensitivity of the highly efficient capillary electrophoresis separation with UV detection. The optimization of the variables affecting the separation as well as MISPE conditions procedure was carried out to select the best conditions of selectivity and sensitivity to determine digoxin at low concentration levels in urine. To demonstrate the suitability of the developed method several analytical characteristics (selectivity, linearity, accuracy, precision, and LOD) were evaluated. Satisfactory results were obtained in terms of linearity (r > 0.99), recovery (95.4-96.5% with RSD from 1.3% to 2.6%), precision (RSD from 0.3% to 1.7% for migration times and from 2.1% to 7.3% for corrected peak areas), and sensitivity (LODs of 6 μg/L with 5 mL of sample or 1.2 μg/L with 25 mL). The proposed MISPE-MEKC method was satisfactorily applied to the analysis of spiked human urine samples achieving a concentration factor up to 7500-fold.  相似文献   
193.
Two novel heterobimetallic complexes of formula [Cr(bpy)(ox)(2)Co(Me(2)phen)(H(2)O)(2)][Cr(bpy)(ox)(2)]·4H(2)O (1) and [Cr(phen)(ox)(2)Mn(phen)(H(2)O)(2)][Cr(phen)(ox)(2)]·H(2)O (2) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and Me(2)phen = 2,9-dimethyl-1,10-phenanthroline) have been obtained through the "complex-as-ligand/complex-as-metal" strategy by using Ph(4)P[CrL(ox)(2)]·H(2)O (L = bpy and phen) and [ML'(H(2)O)(4)](NO(3))(2) (M = Co and Mn; L' = phen and Me(2)phen) as precursors. The X-ray crystal structures of 1 and 2 consist of bis(oxalato)chromate(III) mononuclear anions, [Cr(III)L(ox)(2)](-), and oxalato-bridged chromium(III)-cobalt(II) and chromium(III)-manganese(II) dinuclear cations, [Cr(III)L(ox)(μ-ox)M(II)L'(H(2)O)(2)](+)[M = Co, L = bpy, and L' = Me(2)phen (1); M = Mn and L = L' = phen (2)]. These oxalato-bridged Cr(III)M(II) dinuclear cationic entities of 1 and 2 result from the coordination of a [Cr(III)L(ox)(2)](-) unit through one of its two oxalato groups toward a [M(II)L'(H(2)O)(2)](2+) moiety with either a trans- (M = Co) or a cis-diaqua (M = Mn) configuration. The two distinct Cr(III) ions in 1 and 2 adopt a similar trigonally compressed octahedral geometry, while the high-spin M(II) ions exhibit an axially (M = Co) or trigonally compressed (M = Mn) octahedral geometry in 1 and 2, respectively. Variable temperature (2.0-300 K) magnetic susceptibility and variable-field (0-5.0 T) magnetization measurements for 1 and 2 reveal the presence of weak intramolecular ferromagnetic interactions between the Cr(III) (S(Cr) = 3/2) ion and the high-spin Co(II) (S(Co) = 3/2) or Mn(II) (S(Mn) = 5/2) ions across the oxalato bridge within the Cr(III)M(II) dinuclear cationic entities (M = Co and Mn) [J = +2.2 (1) and +1.2 cm(-1) (2); H = -JS(Cr)·S(M)]. Density functional electronic structure calculations for 1 and 2 support the occurrence of S = 3 Cr(III)Co(II) and S = 4 Cr(III)Mn(II) ground spin states, respectively. A simple molecular orbital analysis of the electron exchange mechanism suggests a subtle competition between individual ferro- and antiferromagnetic contributions through the σ- and/or π-type pathways of the oxalato bridge, mainly involving the d(yz)(Cr)/d(xy)(M), d(xz)(Cr)/d(xy)(M), d(x(2)-y(2))(Cr)/d(xy)(M), d(yz)(Cr)/d(xz)(M), and d(xz)(Cr)/d(yz)(M) pairs of orthogonal magnetic orbitals and the d(x(2)-y(2))(Cr)/d(x(2)-y(2))(M), d(xz)(Cr)/d(xz)(M), and d(yz)(Cr)/d(yz)(M) pairs of nonorthogonal magnetic orbitals, which would be ultimately responsible for the relative magnitude of the overall ferromagnetic coupling in 1 and 2.  相似文献   
194.
The optical absorption of one-dimensional photonic crystal based resonators containing different types of gold nanoparticles is controllably modified by means of the interplay between planar optical cavity modes and localized surface plasmons. Spin-casting of metal oxide nanoparticle suspensions was used to build multilayered photonic structures that host (silica-coated) gold nanorods and spheres. Strong reinforcement and depletion of the absorptance was observed at designed wavelength ranges, thus proving that our method provides a reliable means to modify the optical absorption originated at plasmonic resonances of particles of arbitrary shape and within a wide range of sizes. These observations are discussed on the basis of calculations of the spatial and spectral dependence of the optical field intensity within the multilayers.  相似文献   
195.
Molybdenum and tungsten complexes containing the pypzH (3-(2-pyridyl)pyrazole) ligand as a chelating bidentate are prepared: [Mo(CO)(4)(pypzH)], cis-[MoBr(η(3)-allyl)(CO)(2)(pypzH)], cis-[MoCl(η(3)-methallyl)(CO)(2)(pypzH)], [MI(2)(CO)(3)(pypzH)] (M = Mo, W) from [Mo(CO)(4)(NBD)] or the adequate bis(acetonitrile) complexes. The deprotonation of the molybdenum allyl or methallyl complexes affords the bimetallic complexes [cis-{Mo(η(3)-allyl)(CO)(2)(μ(2)-pypz)}](2) or [cis-{Mo(η(3)-methallyl)(CO)(2)(μ(2)-pypz)}](2) (μ(2)-pypz = μ(2)-3-(2-pyridyl-κ(1)N)pyrazolate-2κ(1)N). The allyl complex was subjected to an electrochemical study, which shows a marked connection between both metallic centres through the bridging pyridylpyrazolates.  相似文献   
196.
Heteronuclear complexes {[Hg(R)2][Au(R′)(PMe3)]2}n (R=R′=C6Cl2F3 ( 3 ); R=R′=C6F5 ( 4 ); R=C6Cl2F3, R′=C6F5 ( 5 ); R=C6F5, R′=C6Cl2F3 ( 6 )) were prepared by the treatment of the corresponding organomercury compounds, [Hg(C6X5)2], with two equivalents of [Au(C6X5)(PMe3)]. Their crystal structures, as determined by using X‐ray diffraction methods, display Au???Hg interactions. Although only compound 4 and 5 show luminescence in the solid state, all of these compounds quench the fluorescence of naphthalene in solution. Solution studies of these derivatives suggest a cooperative effect of the gold(I) center in switching on the quenching capabilities of the [Hg(C6X5)2] synthon with naphthalene. Theoretical studies confirmed the quenching ability of the organomercury species in the presence of gold.  相似文献   
197.
CuI‐catalyzed 1,3‐cycloaddition of azides and alkynes (CuAAC) is one of the most powerful synthetic methodologies known. However, its use to prepare well‐defined multimetallic structures is underdeveloped. Apart from the applications of this reaction to anchor different organometallic reagents to surfaces, polymers, and dendrimers, only isolated examples of CuAAC with metal–η1‐alkyne and metal–azide complexes to prepare multimetal entities have been reported. This concept sketches the potential of these reactions not only to prepare “a la carte” multimetal 1,2,3‐triazole derivatives, but also to discover new and unprecedented reactions.  相似文献   
198.
As the spacer length in 1,2-dimethylimidazolium-based dications increases beyond a specific point (six methylene units), they fail in structure-directing towards STW zeolites in any synthetic conditions. These dications can instead produce, under fluoride concentrated conditions, either *BEA [in the case of the eight-methylene-unit structure-directing agent (SDA)] or MWW (ten methylene units) zeolites. For any length of the dication, the default zeolite (MTW) is a relatively dense zeolite containing a unidimensional channel, whereas the zeolite demanding most specificity (STW, *BEA or MWW) is more porous, affording a larger concentration of the dication to be occluded. This work provides the first reported fluoride synthesis of pure silica MWW zeolites. Charge balance of the organic dications in this zeolite was achieved by combining “structural” silanolates, regular “connectivity defects” and occluded fluoride. Molecular mechanics calculations showed a perfect fit of the decamethylenebis(dimethylimidazolium) dication in the sinusoidal intralayer pore system of MWW. The calculations showed also that the dication is able to stabilize the interlayer space without disturbing the hydrogen-bonding system that holds the layers together in the as-made material. The 19F magic-angle spinning (MAS) NMR presented two distinct resonances at −71 and −83 ppm, which, on the basis of DFT calculations, we tentatively assigned to fluoride occluded in [4662] and [415262] cages of the MWW structure, respectively. The same DFT study determines a different chemical shift of one methyl 13C nuclear magnetic resonance according to the imidazolium ring residing in the sinusoidal channels or in the large cup cavities, thus explaining an experimentally observed splitting of that resonance.  相似文献   
199.
Micellar liquid chromatography (MLC) and capillary zone electrophoresis (CZE) have been evaluated for the analysis of twelve banned drugs in sport including diuretics and -blockers. In MLC, a sodium dodecylsulphate aqueous solution has been used as mobile phase using an octadecylsilica column. In CZE, a pH 8 buffer solution and a silica capillary have been employed. Parameters of retention and efficiency have been compared. Limits of detection with UV detection at 254 nm and relative standard deviations for atenolol, furosemide, nadolol, spironolactone and triamterene were established and compared in both techniques. Examples of direct urine injection into the separation systems are presented. Drugs overlapping in MLC are well resolved in CZE, while the opposite is true for a limited number of drugs. Some interferences from urine may arise in CZE. The selectivity of analysis would be greatly enhanced by using both techniques, which require only filtration as pre-treatment.  相似文献   
200.
The basic components of a (bio)chemical sensor and the main concepts involved in the (bio)chemical sensor methodology are considered in order to depict the state of the art of the development of research in this field, paying special attention to the evolution of the published scientific literature in analytical chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号