首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1223篇
  免费   44篇
  国内免费   3篇
化学   751篇
晶体学   25篇
力学   48篇
数学   219篇
物理学   227篇
  2024年   2篇
  2023年   6篇
  2022年   26篇
  2021年   44篇
  2020年   39篇
  2019年   39篇
  2018年   31篇
  2017年   51篇
  2016年   56篇
  2015年   52篇
  2014年   50篇
  2013年   116篇
  2012年   104篇
  2011年   104篇
  2010年   79篇
  2009年   64篇
  2008年   74篇
  2007年   65篇
  2006年   38篇
  2005年   42篇
  2004年   49篇
  2003年   25篇
  2002年   24篇
  2001年   8篇
  2000年   15篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   8篇
  1995年   3篇
  1994年   7篇
  1993年   1篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1980年   2篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1972年   2篇
  1907年   1篇
排序方式: 共有1270条查询结果,搜索用时 0 毫秒
81.
Shear-thinning biomaterials (STBs) based on gelatin-silicate nanoplatelets (SNs) are emerging as an alternative to conventional coiling and clipping techniques in the treatment of vascular anomalies. Improvements in the cohesion of STB hydrogels pave the way toward their translational application in minimally invasive therapies such as endovascular embolization repair. In the present study, sodium phytate (Phyt) additives are used to tune the electrostatic network of SNs-gelatin STBs, thereby promoting their mechanical integrity and facilitating injectability through standard catheters. We show that an optimized amount of Phyt enhances storage modulus by approximately one order of magnitude and reduces injection force by ≈58% without compromising biocompatibility and hydrogel wet stability. The Phyt additives are found to decrease the immune responses induced by SNs. In vitro embolization experiments suggest a significantly lower rate of failure in Phyt-incorporated STBs than in control groups. Furthermore, the addition of Phyt leads to accelerated blood coagulation (reduces clotting time by ≈45% compared to controls) due to the contributions of negatively charged phosphate groups, which aid in the prolonged durability of STB in coagulopathic patients. Therefore, the proposed approach is an effective method for the design of robust and injectable STBs for minimally invasive treatment of vascular malformations.  相似文献   
82.
A platform based on praseodymium doped dysprosium oxide-carbon nanofibers modified electrode was constructed for the simultaneous determination of SY and TAR. SEM, EDX and XRD techniques were utilized for characterizing the proposed material. The voltammetric behaviour and properties of SY and TAR were gradually improved at materials in order from CNFs to Dy2O3−CNFs and Pr6O11@Dy2O3−CNFs. The working range was found to be 1.0×10−9–3.5×10−8 M and 1.5×10−9–4.0×10−8 M for SY and TAR, respectively. The value of LOD was 3.12×10−10 M and 5.35×10−10 M for SY and TAR, respectively. The platform (Pr6O11@Dy2O3−CNFs/GCE) was successfully applied to the electroanalysis of samples.  相似文献   
83.
Metal-catalyzed asymmetric transfer hydrogenation is a powerful and practical method for the reduction of ketones to produce the corresponding secondary alcohols, which are valuable building blocks in the pharmaceutical, perfume, and agrochemical industries. Hence, a series of novel chiral β-amino alcohols were synthesized by chiral amines with regioselective ring opening of (S)-propylene oxide or reaction with (S)-(+)-2-hydroxypropyl p-toluenesulfonate by a straightforward method. The chiral ruthenium catalytic systems generated from [Ru(arene)(μ-Cl)Cl]2 complexes and chiral phosphinite ligands based on amino alcohol derivatives were employed in asymmetric transfer hydrogenation of ketones to give the corresponding optically active alcohols; (2S)-1-{[(2S)-2-[(diphenylphosphanyl)oxy]propyl][(1R)-1-phenylethyl]amino}propan-2-yldiphenylphosphinitobis[dichol-oro(η6-benzene)ruthenium(II)] acts an excellent catalyst in the reduction of α-naphthyl methyl ketone, giving the corresponding alcohol with up to 99% ee. The substituents on the backbone of the ligands were found to have a remarkable effect on both the conversion and enantioselectivity of the catalysts. Furthermore, this transfer hydrogenation is characterized by low reversibility under these conditions.  相似文献   
84.
Journal of Thermal Analysis and Calorimetry - Thermal energy storage systems provide efficiency in order to have better utilization of energy sources while protecting the environment. Thermal...  相似文献   
85.
Activated carbon production from almond shells using phosphoric acid activation agent was achieved by applying both conventional heating and microwave heating in succession. The morphology and surface properties of activated carbon were studied using thermogravimetric and differential gravimetric analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy, and Brunauer–Emmett–Teller analysis. A surface area of 1128 m2/g was achieved by optimizing the microwave power (500?W), microwave application time (15?minutes), conventional heating time (45?minutes), conventional heating temperature (500?°C), and the phosphoric acid:sample ratio (0.7:1). An adsorption capacity of methylene blue of 148?mg/g and an iodine value of 791?mg/g was obtained for the prepared activated carbon.  相似文献   
86.
A novel flow-injection amperometric method was proposed for the sensitive and enzymeless determination of hydrogen peroxide based on its electrocatalytic reduction at a palladium nanoparticle-modified pretreated pencil graphite electrode in a laboratory-constructed electrochemical flow cell. Cyclic voltammograms of the unmodified and modified electrodes were recorded in pH 7.0 phosphate buffer containing 0.10 M KCl at a scan rate of 50?mV s?1 for the investigation of electrocatalytic reduction of hydrogen peroxide at the palladium nanoparticle-modified pretreated pencil graphite electrode. Cyclic voltammograms of the pretreated pencil graphite electrode revealed an irreversible oxidation peak and a weak reduction peak of hydrogen peroxide at +1100?mV and –450?mV vs. an Ag/AgCl/KCl saturated reference electrode. However, the reduction of hydrogen peroxide was observed at –100?mV with an increase in current in the cyclic voltammograms of the palladium nanoparticle-modified pretreated pencil graphite electrode compared to the unmodified electrode. These results indicate that the palladium nanoparticle-modified pretreated pencil graphite electrode exhibits efficient electrocatalytic activity for the reduction of hydrogen peroxide. A linear concentration range was obtained between .01 and 10.0?mM hydrogen peroxide with a detection limit of 3.0 µM from flow injection amperometric current–time curves recorded in pH 7.0 phosphate buffer at –100?mV and a 2.0?mL min?1 flow rate. The novelty of this work relies on its use of a laboratory-constructed flow cell constructed for the pencil graphite electrode using these inexpensive, disposable, and electrochemically reactive modified electrodes for the amperometric determination of hydrogen peroxide in a flow injection analysis system.  相似文献   
87.
Journal of Thermal Analysis and Calorimetry - In the current study, huntite and hydromagnesite (HH) was used as flame-retardant additive in linear low-density polyethylene (LLDPE). The effect of HH...  相似文献   
88.
Two polydentade Schiff base ligands and their Ru(III), Cr(III) and Fe(III) complexes were synthesized and characterized by elemental analysis (C, H, N), UV/Vis, FT IR, 1H and 13C NMR, LC–MS/MS, molar conductivity and magnetic susceptibility techniques. The absorption bands in the electronic spectra and magnetic moment measurements verified an octahedral environment around the metal ions in the complexes. The thermal stabilities were investigated using TGA. The synthesized complexes were used in the catalytic oxidation of 2-methyl naphthalene (2MN) to 2-methyl-1,4-naphthoquinone; vitamin K3, menadione, 2MNQ; using hydrogen peroxide, acetic acid and sulfuric acid. L1-Fe(III) complex showed very efficient catalytic activity with 58.54% selectivity in the conversions of 79.11%.  相似文献   
89.
The metabolites of the environmental pollutant, benzo[a]pyrene (BaP) are carcinogenic and mutagenic agents. Thus, the determination of additional products (adducts) of the interaction between DNA and BaP, attracts great interest in cancer research.

In this study, the determination of interaction between BaP and calf thymus double-stranded DNA (dsDNA) was performed by using differential pulse voltammetry (DPV) and constant current chronopotentiometric stripping analysis (PSA) in connection with carbon paste electrode (CPE) or glassy carbon electrode (GCE). As a result of interaction of BaP with dsDNA, the signal obtained from the oxidation of guanine decreased and a new adduct signal at a more positive potential appeared. This new peak is attributed to the formation of an adduct from the interaction of guanine with BaP. The chemically prepared anti-7,8,9,10-tetrahydrobenzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE) adduct by using iodine oxidation was analyzed and the electrochemical signal of the adduct was observed. When the dsDNA modified GCE was immersed into various concentrations of BaP solution, the oxidation peak of guanine decreased and the adduct peak increased with the increasing BaP concentration. The partition coefficient was also obtained from the peak of BaP with dsDNA. The results revealed that the formation of adducts could be determined by using electrochemical DNA biosensors, which are fast, simple and cost-effective devices. Furthermore, this study promises that the analysis of other important adducts would benefit from the introduction of electrochemical methods.  相似文献   

90.
Exposure to arsenic can cause various biological effects by increasing the production of reactive oxygen species (ROS). Selenium acts as a beneficial element by regulating ROS and limiting heavy metal uptake and translocation. There are studies on the interactive effects of As and Se in plants, but the antagonistic and synergistic effects of these elements based on their binding to glutathione (GSH) molecules have not been studied yet. In this study, we aimed to investigate the antagonistic or synergistic effects of As and Se on the binding mechanism of Se and As with GSH at pH 3.0, 5.0, or 6.5. The interaction of As and Se in Se(SG)2 + As(III) or As(SG)3 + Se(IV) binary systems and As(III) + Se(IV) + GSH ternary system were examined depending on their ratios via liquid chromatography diode array detector/electrospray mass spectrometry (LC-DAD/MS) and liquid chromatography–electrospray ionization–tandem mass spectrometry (LC-ESI-MS/MS). The results showed that the formation of As(GS)3 was not detected in the As(III) + Se(SG)2 binary system, indicating that As(III) did not affect the stability of Se(SG)2 complex antagonistically. However, in the Se(IV) + As(SG)3 binary system, the addition of Se(IV) to As(SG)3 affected the stability of As(SG)3 antagonistically. Se(IV) reacted with GSH, disrupting the As(SG)3 complex, and consequently, Se(SG)2 formation was measured using LC-MS/DAD. In the Se(IV) + GSH + As(III) ternary system, Se(SG)2 formation was detected upon mixing As(III), Se(IV), and GSH. The increase in the concentration of As(III) did not influence the stability of the Se(SG)2 complex. Additionally, Se(IV) has a higher affinity than As(III) to the GSH, regardless of the pH of the solution. In both binary and ternary systems, the formation of the by-product glutathione trisulfide (GSSSG) was detected using LC-ESI-MS/MS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号