首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1201篇
  免费   54篇
  国内免费   3篇
化学   736篇
晶体学   25篇
力学   49篇
数学   228篇
物理学   220篇
  2024年   2篇
  2023年   6篇
  2022年   15篇
  2021年   41篇
  2020年   39篇
  2019年   35篇
  2018年   31篇
  2017年   51篇
  2016年   57篇
  2015年   53篇
  2014年   50篇
  2013年   113篇
  2012年   103篇
  2011年   108篇
  2010年   78篇
  2009年   64篇
  2008年   75篇
  2007年   68篇
  2006年   39篇
  2005年   42篇
  2004年   50篇
  2003年   26篇
  2002年   24篇
  2001年   8篇
  2000年   13篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   8篇
  1995年   3篇
  1994年   7篇
  1993年   1篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1980年   2篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1972年   2篇
  1907年   1篇
排序方式: 共有1258条查询结果,搜索用时 125 毫秒
991.
Cellulose - The pressure retarded osmosis (PRO) process requires high performance, high flux, high rejection, and resistant membranes under harsh conditions. Since conventional phase-inversion...  相似文献   
992.
993.
The use of post‐metallocene bis‐phenylphenoxy catalysts to polymerize ethylene under high ethylene pressures (>25,000 psi) results in some remarkable catalytic properties. The high ethylene pressure produces molar ethylene concentrations in the reactor as much as 40 times higher than in typical low pressure ethylene polymerizations. This high ethylene concentration results in high catalyst efficiency at high temperatures and low reactor residence time, between 180 °C and 240 °C the catalyst efficiency surprisingly increases with increasing temperature, allowing for use of these catalysts at temperatures much higher than can be utilized in the low pressure processes. It has further been demonstrated that under these conditions increasing hydrogen levels up to 0.5 mol% does not significantly affect the polymer molecular weight; however, polymer molecular weight control can be realized with varying reactor temperature. The polymer produced is shown to be high density polyethylene made from a single site catalyst and not free radical initiated low density polymer. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 861–866  相似文献   
994.
Novel fluorinated coating containing well‐dispersed silicate nanolayers is successfully produced via in‐situ free radical polymerization of 2,2,2‐trifluoroethyl methacrylate in the presence of vinylbenzyl‐functionalized montmorillonite with different loading. The organic modification of sodium montmorillonite is achieved through an ion exchange reaction with triphenylvinylbenzylphosphonium chloride as surfactant prepared before use by reaction with vinylbenyl chloride and phosphine. The following in‐situ polymerization in the presence of organomodified clay leads to fluorinated nanocomposites with of partially exfoliated and intercalated morphologies, as determined via XRD and TEM analysis. The nanoscale dispersion of clay layers is also evidenced by thermal analysis; a moderate decrease of the glass transition temperature about 2–8 °C compared to their virgin PMATRIF and an improvement of their thermal stability as evidenced by TGA. The wettability of the nanocomposite films is also studied by contact angle measurements with water. The incorporation of organomodified clays not only increases the hydrophobicity of the fluorinated polymers but also improves the surface properties of obtained nanocomposites. Compared the virgin homopolymer, the mechanical properties of the nanocomposites are reduced by addition of organomodifed clay at temperature from 30 to 60 °C, whereas this trend is gradually decreased at higher temperature. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 411–418  相似文献   
995.
996.
997.
998.
Bacillomycin D is a natural antimicrobial lipopeptide belonging to the iturin family. It is produced by Bacillus subtilis strains. Bacillomycin D is characterized by its strong antifungal and hemolytic properties, due to its interaction with the plasma membrane of sensitive cells. Until now, only few limited analyses were conducted to understand the biological activities of bacillomycin D at the molecular level. Our purpose was to analyze the conformation of bacillomycin D using IR spectroscopy and to model its interactions with cytoplasmic membranes using Langmuir interfacial monolayers. Our findings indicate that bacillomycin D contains turns and allow to model its three-dimensional structure. Bacillomycin D formed a monolayer film at the air-water interface and kept its turn conformation, as shown by polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). To identify the membrane lipid target of bacillomycin D, its interactions with pure lipid monolayers were analyzed and an original behavior of the lipopeptide toward cholesterol-containing monolayers was shown. This original behavior was lost when bacillomycin D was interacting with pure cholesteryl acetate monolayers, suggesting the involvement of the alcohol group of cholesterol in the lipopeptide-cholesterol interaction.  相似文献   
999.
The aim of this study was to demonstrate the altered metabolic infrastructure of pregnant women with methylenetetrahydrofolate reductase (MTHFR) polymorphisms at first trimester and during delivery. Eight singleton pregnant women with MTHFR polymorphisms were compared with 10 normal pregnant women. Maternal blood samples were obtained twice during their pregnancy period (between the 11th and 14th gestational weeks and during delivery). Metabolomic analysis was performed using GC–MS. The GC–MS based metabolomic profile helped identify 95 metabolites in the plasma samples. In the MTHFR group, the levels of 1-monohexadecanoylglycerol, pyrophosphate, benzoin, and linoleic acid significantly decreased (P ˂ 0.05 for all), whereas the levels of glyceric acid, l -tryptophan, l -alanine, l -proline, norvaline, l -threonine, and myo-inositol significantly increased (P ˂ 0.01 for the first two metabolites, P ˂ 0.05 for the others) at 11–14 gestational weeks. Conversely, the levels of benzoin, 1-monohexadecanoylglycerol, pyruvic acid, l -proline, phosphoric acid, epsilon-caprolactam, and pipecolic acid significantly decreased in the MTHFR group, whereas metabolites such as hexadecanoic acid and 2-hydroxybutyric acid increased significantly in the study group during delivery. An impaired energy metabolism pathway, vitamin B complex disorders, tendency for metabolic acidosis (oxidative stress), and the need for cell/tissue support seem prevalent in pregnancies with MTHFR polymorphisms.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号