With gold and platinum catalysts, cis-4,6-dien-1-yn-3-ols undergo cycloisomerizations that enable structural reorganization of cyclized products chemoselectively. The AuCl3-catalyzed cyclizations of 6-substituted cis-4,6-dien-1-yn-3-ols proceeded via a 6-exo-dig pathway to give allyl cations, which subsequently undergo a pinacol rearrangement to produce reorganized cyclopentenyl aldehyde products. Using chiral alcohol substrates, such cyclizations proceed with reasonable chirality transfer. In the PtCl2-catalyzed cyclization of 7,7-disubstituted cis-4,6-dien-1-yn-3-ols, we obtained exclusively either bicyclo[4.1.0]heptenones or reorganized styrene products with varied substrate structures. On the basis of the chemoselectivity/structure relationship, we propose that bicyclo[4.1.0]heptenone products result from 6-endo-dig cyclization, whereas reorganized styrene products are derived from the 5-exo-dig pathway. This proposed mechanism is supported by theoretic calculations. 相似文献
Over the last few decades, the in vitro motility assay has been performed to probe the biophysical and chemo-mechanical properties as well as the self-organization process of biomolecular motor systems such as actin-myosin and microtubule-kinesin. However, aggression of the reactive oxygen species (ROS) and concomitant termination of the activity of biomolecular motors during investigation remains a drawback of this assay. Despite enzymatic protection that makes use of a combination of glucose, glucose oxidase, and catalase, the active lifetime of biomolecular motors is found to be only a few hours and this short lifetime restricts further study on those systems. We have solved this problem by using a newly developed system of the in vitro motility assay that is conducted in an inert nitrogen gas atmosphere free of ROS. Using microtubule-kinesin as a model system we have shown that our system has prolonged the active lifetime of the biomolecular motor until several days and even a week by protecting it from oxidative damage. 相似文献
The high cost of the bridging liquid subdues the implementation and commercialization of oil agglomeration process. To overcome this problem, waste oils from different sectors were used in this present study. The performance of the process was assessed based on the responses like ash rejection and organic matter recovery. The aim of the present study was to investigate the usage of waste oils from different sectors and to optimize and analyze the behavioral pattern showcased by different variables (pulp density, oil dosage, agglomeration time and oil type) using response surface methodology (Box-Behnken design). Experimental investigation shows that the optimum pulp density, oil dosage, agglomeration time and oil type condition obtained as 3%, 15%, 15?min and waste engine oil, respectively. At optimum condition, the % ash rejection and % organic matter recovery obtained as 63.94% and 81.8%, respectively. 相似文献
Co–Fe bimetallic nanoparticles-affixed polyvinylidene fluoride-co-hexafluoropropylene (PVdF-HFP) nanofiber membrane is fabricated using the electrospinning and chemical reduction techniques. The semicrystalline polymeric backbone decorated with the highly crystalline Co–Fe bimetallic nanoparticles enunciates the mechanical integrity, while the incessant and swift electron mobility is articulated with the consistent dissemination of bimetallic nanoparticles on the intersected and multi-layered polymeric nanofibers. The diffusion and adsorption of glucose are expedited in the extended cavities and porosities of as-formulated polymeric nanofibers, maximizing the glucose utilization efficacy, while the uniformly implanted Co4+/Fe3+ active centers on PVdF-HFP nanofibers maximize the electrocatalytic activity toward glucose oxidation under alkaline regimes. Thus, the combinative sorts including nanofiber and nanocomposite strategies of PVdF-HFP/Co–Fe membrane assimilate the enzyme-less electrochemical glucose detection concerts of high sensitivity (375.01 μA mM?1 cm?2), low limit of detection (0.65 μm), and wide linear range (0.001 to 8 mM), outfitting the erstwhile enzyme-less glucose detection reports. Additionally, the endowments of high selectivity and real sample glucose-sensing analyses of PVdF-HFP/Co–Fe along with the binder-less and free-standing characteristics construct the state-of-the-art paradigm for the evolution of affordable enzyme-less electrochemical glucose sensors.
Neurotoxicity is a serious health problem of patients chronically exposed to arsenic. There is no specific treatment of this problem. Oxidative stress has been implicated in the pathological process of neurotoxicity. Polyphenolics have proven antioxidant activity, thereby offering protection against oxidative stress. In this study, we have isolated the polyphenolics from Acacia nilotica and investigated its effect against arsenic-induced neurotoxicity and oxidative stress in mice. Acacia nilotica polyphenolics prepared from column chromatography of the crude methanol extract using diaion resin contained a phenolic content of 452.185 ± 7.879 mg gallic acid equivalent/gm of sample and flavonoid content of 200.075 ± 0.755 mg catechin equivalent/gm of sample. The polyphenolics exhibited potent antioxidant activity with respect to free radical scavenging ability, total antioxidant activity and inhibition of lipid peroxidation. Administration of arsenic in mice showed a reduction of acetylcholinesterase activity in the brain which was counteracted by Acacia nilotica polyphenolics. Similarly, elevation of lipid peroxidation and depletion of glutathione in the brain of mice was effectively restored to normal level by Acacia nilotica polyphenolics. Gallic acid methyl ester, catechin and catechin-7-gallate were identified in the polyphenolics as the major active compounds. These results suggest that Acacia nilotica polyphenolics due to its strong antioxidant potential might be effective in the management of arsenic induced neurotoxicity. 相似文献
Baricitinib (BTB) is an orally administered Janus kinase inhibitor, therapeutically used for the treatment of rheumatoid arthritis. Recently it has also been approved for the treatment of COVID-19 infection. In this study, four different BTB-loaded lipids (stearin)-polymer (Poly(d,l-lactide-co-glycolide)) hybrid nanoparticles (B-PLN1 to B-PLN4) were prepared by the single-step nanoprecipitation method. Next, they were characterised in terms of physicochemical properties such as particle size, zeta potential (ζP), polydispersity index (PDI), entrapment efficiency (EE) and drug loading (DL). Based on preliminary evaluation, the B-PLN4 was regarded as the optimised formulation with particle size (272 ± 7.6 nm), PDI (0.225), ζP (−36.5 ± 3.1 mV), %EE (71.6 ± 1.5%) and %DL (2.87 ± 0.42%). This formulation (B-PLN4) was further assessed concerning morphology, in vitro release, and in vivo pharmacokinetic studies in rats. The in vitro release profile exhibited a sustained release pattern well-fitted by the Korsmeyer–Peppas kinetic model (R2 = 0.879). The in vivo pharmacokinetic data showed an enhancement (2.92 times more) in bioavailability in comparison to the normal suspension of pure BTB. These data concluded that the formulated lipid-polymer hybrid nanoparticles could be a promising drug delivery option to enhance the bioavailability of BTB. Overall, this study provides a scientific basis for future studies on the entrapment efficiency of lipid-polymer hybrid systems as promising carriers for overcoming pharmacokinetic limitations. 相似文献
The polymerization of acrylonitrile initiated by an ascorbic acid–peroxodisulfate redox system was studied in an aqueous solution at 35°C in the presence of air. Molecular oxygen was found to have no effect on the polymerization reaction. An increase in ionic strength slightly increased the rate. The overall rate of polymerization, Rp, showed a square dependence on [monomer] and a half-order dependence on [peroxodisulfate]. A first-order dependence on [ascorbic acid] at low concentrations (<3.0 × 10?3 mol L?1) followed by a decrease in Rp at higher concentrations of ascorbic acid (>3.0 × 10?3 mol L?1) was also noted. Rp remained unchanged up to 40°C and showed a decline thereafter. Addition of catalytic amounts of cupric ions decreased the rate whereas ferric ions were found to increase the rate. Added sulfuric acid in the range (6.0?50.0) × 10?5 mol L?1 decreased the Rp. 相似文献
The tris-methylene bridged compound (NO)4Fe2Se(μ-CH2)3 has been isolated. It has been characterised by IR and 1H, 13C, and 77Se NMR spectroscopy. Its structure has been determined by single-crystal X-ray diffraction methods. The structure consists of a heavy atom triangle consisting of one Se and two Fe atoms. The Fe-Fe and the two Fe-Se edges are bridged by methylene groups. 相似文献
Dopamine (DA) is an important neurotransmitter, which is created and released from the central nervous system. It plays a crucial role in human activities, like cognition, emotions, and response to anything. Maladjustment of DA in human blood serum results in different neural diseases, like Parkinson's and Schizophrenia. Consequently, researchers have started working on DA detection in blood serum, which is undoubtedly a hot research area. Electrochemical sensing techniques are more promising to detect DA in real samples. However, utilizing conventional electrodes for selective determination of DA encounters numerous problems due to the coexistence of other materials, such as uric acid and ascorbic acid, which have an oxidation potential close to DA. To overcome such problems, researchers have put their focus on the modification of bare electrodes. The aim of this review is to present recent advances in modifications of most used bare electrodes with carbonaceous materials, especially graphene, its derivatives, and carbon nanotubes, for electrochemical detection of DA. A brief discussion about the mechanistic phenomena at the electrode interface has also been included in this review. 相似文献