首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   629篇
  免费   45篇
  国内免费   4篇
化学   485篇
力学   9篇
数学   76篇
物理学   108篇
  2023年   22篇
  2022年   25篇
  2021年   33篇
  2020年   54篇
  2019年   27篇
  2018年   13篇
  2017年   15篇
  2016年   37篇
  2015年   29篇
  2014年   30篇
  2013年   32篇
  2012年   32篇
  2011年   42篇
  2010年   15篇
  2009年   17篇
  2008年   16篇
  2007年   15篇
  2006年   26篇
  2005年   12篇
  2004年   12篇
  2003年   10篇
  2002年   3篇
  2001年   4篇
  2000年   6篇
  1999年   4篇
  1998年   9篇
  1997年   4篇
  1996年   3篇
  1995年   11篇
  1994年   7篇
  1991年   4篇
  1990年   3篇
  1988年   7篇
  1985年   14篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1979年   6篇
  1975年   4篇
  1974年   3篇
  1970年   3篇
  1968年   2篇
  1938年   2篇
  1932年   2篇
  1910年   2篇
  1898年   2篇
  1895年   2篇
  1891年   2篇
排序方式: 共有678条查询结果,搜索用时 93 毫秒
101.
Multivalent batteries show promising prospects for next-generation sustainable energy storage applications. Herein, we report a polytriphenylamine (PTPAn) composite cathode capable of highly reversible storage of tetrakis(hexafluoroisopropyloxy) borate [B(hfip)4] anions in both Magnesium (Mg) and calcium (Ca) battery systems. Spectroscopic and computational studies reveal the redox reaction mechanism of the PTPAn cathode material. The Mg and Ca cells exhibit a cell voltage >3 V, a high-power density of ∼∼3000 W kg−1 and a high-energy density of ∼∼300 Wh kg−1, respectively. Moreover, the combination of the PTPAn cathode with a calcium-tin (Ca−Sn) alloy anode could enable a long battery-life of 3000 cycles with a capacity retention of 60 %. The anion storage chemistry associated with dual-ion electrochemical concept demonstrates a new feasible pathway towards high-performance divalent ion batteries.  相似文献   
102.
The bimetallic, decanuclear Ni3Ga7-cluster of the formula [Ni3(GaTMP)3(μ2-GaTMP)3(μ3-GaTMP)] ( 1 , TMP=2,2,6,6-tetramethylpiperidinyl) reacts reversibly with dihydrogen under the formation of a series of (poly-)hydride clusters 2 . Low-temperature 2D NMR experiments at −80 °C show that 2 consist of a mixture of a di- ( 2Di ), tetra- ( 2Tetra ) and hexahydride species ( 2Hexa ). The structures of 2Di and 2Tetra are assessed by a combination of 2D NMR spectroscopy and DFT calculations. The cooperation of both metals is essential for the high hydrogen uptake of the cluster. Polyhydrides 2 are catalytically active in the semihydrogenation of 4-octyne to 4-octene with good selectivity. The example is the first of its kind and conceptually relates properties of molecular, atom-precise transition metal/main group metal clusters to the respective solid-state phase in catalysis.  相似文献   
103.
104.
105.
A 4‐ethynylpyridyl derivative with sterically shielding phenyl groups in the 3‐ and 5‐positions has been synthesized and used to terminate a series of polyynes. This approach allows for the synthesis of stable polyynes up to an octayne, twice as long as previous accessible for “unstabilized” pyridyl‐endcapped polyynes. The potential of these polyynes as wire‐like linkers to metal centers is demonstrated by axial coordination of pyridyl groups to zinc‐ and ruthenium‐metalloporphyrins.  相似文献   
106.
A transformation analogous in simplicity and functional group tolerance to the venerable Suzuki cross‐coupling between alkyl‐carboxylic acids and boronic acids is described. This Ni‐catalyzed reaction relies upon the activation of alkyl carboxylic acids as their redox‐active ester derivatives, specifically N‐hydroxy‐tetrachlorophthalimide (TCNHPI), and proceeds in a practical and scalable fashion. The inexpensive nature of the reaction components (NiCl2?6 H2O—$9.5 mol?1, Et3N) coupled to the virtually unlimited commercial catalog of available starting materials bodes well for its rapid adoption.  相似文献   
107.
Aluminum trihydride (alane) is one of the most promising among the prospective solid hydrogen-storage materials, with a high gravimetric and volumetric density of hydrogen. In the present work, the alane, crystallizing in the gamma-AlH3 polymorphic modification, was synthesized and then structurally characterized by means of synchrotron X-ray powder diffraction. This study revealed that gamma-AlH3 crystallizes with an orthorhombic unit cell (space group Pnnm, a = 5.3806(1) A, b = 7.3555(2) A, c = 5.77509(5) A). The crystal structure of gamma-AlH3 contains two types of AlH6 octahedra as the building blocks. The Al-H bond distances in the structure vary in the range of 1.66-1.79 A. A prominent feature of the crystal structure is the formation of the bifurcated double-bridge bonds, Al-2H-Al, in addition to the normal bridge bonds, Al-H-Al. This former feature has not been previously reported for Al-containing hydrides so far. The geometry of the double-bridge bond shows formation of short Al-Al (2.606 A) and Al-H (1.68-1.70 A) bonds compared to the Al-Al distances in Al metal (2.86 A) and Al-H distances for Al atoms involved in the formation of normal bridge bonds (1.769-1.784 A). The crystal structure of gamma-AlH3 contains large cavities between the AlH6 octahedra. As a consequence, the density is 11% less than for alpha-AlH3.  相似文献   
108.
The λ‐transition of elemental sulfur occurring at about 159°C has long been associated with the conversion of cyclic S8 rings (c‐S8) to amorphous polymer (a‐S) via a ring opening polymerization. Here we demonstrate, with the use of both density functional and Hartree‐Fock quantum mechanical calculations, the existence of an energetically accessible, locally stable, hypervalent state of S that can form branch sites in the polymer. The significance of this finding is that the λ‐transition is best described as a gelation transition. The geometry of the tetravalent S atom is trigonal bipyramidal, with a lone pair occupying one of the three equatorial sites; it lies in a local energy minimum about 31 kcal/mol above the normal divalent state, and so is accessible both thermally and photochemically. Because the branched structure is formed endothermically, Le Chatelier's principle confirms that a percolation network can form on heating the element. The reactions that form branched structures are reversible, implying that the gel is fluxional. It decomposes at higher temperatures as chain scission competes with branching. The hypervalent structure provides an essential insight into the chemistry of elemental sulfur.  相似文献   
109.
Homeostatic models of artificial neural networks have been developed to explain the self-organization of a stable dynamical connectivity between the neurons of the net. These models are typically two-population models, with excitatory and inhibitory cells. In these models, connectivity is a means to regulate cell activity, and in consequence, intracellular calcium levels towards a desired target level. The excitation/inhibition (E/I) balance is usually set to 80:20, a value characteristic for cortical cell distributions. We study the behavior of these homeostatic models outside of the physiological range of the E/I balance, and we find a pronounced bifurcation at about the physiological value of this balance. Lower inhibition values lead to sparsely connected networks. At a certain threshold value, the neurons develop a reasonably connected network that can fulfill the homeostasis criteria in a stable way. Beyond the threshold, the behavior of the artificial neural network changes drastically, with failing homeostasis and in consequence with an exploding number of connections. While the exact value of the balance at the bifurcation point is subject to the parameters of the model, the existence of this bifurcation might explain the stability of a certain E/I balance across a wide range of biological neural networks. Assuming that this class of models describes the self-organization of biological network connectivity reasonably realistically, the omnipresent physiological balance might represent a case of self-organized criticality in order to obtain a good connectivity while allowing for a stable intracellular calcium homeostasis.  相似文献   
110.
The appropriate choice of chiral catalyst and starting materials leads to the synthesis of 1,2‐oxazetidin‐3‐ones by cycloadditions of ketenes with nitroso compounds with very good regioselectivity and enantioselectivity. In addition to serving as potentially bioactive target molecules, the products can be transformed into other important classes of compounds, such as α‐hydroxycarboxylic acid derivatives.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号