首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2184篇
  免费   59篇
  国内免费   4篇
化学   1662篇
晶体学   4篇
力学   18篇
数学   337篇
物理学   226篇
  2023年   29篇
  2022年   19篇
  2021年   23篇
  2020年   61篇
  2019年   50篇
  2018年   27篇
  2017年   17篇
  2016年   40篇
  2015年   28篇
  2014年   39篇
  2013年   67篇
  2012年   69篇
  2011年   95篇
  2010年   38篇
  2009年   44篇
  2008年   69篇
  2007年   62篇
  2006年   71篇
  2005年   68篇
  2004年   55篇
  2003年   44篇
  2002年   38篇
  2001年   17篇
  2000年   21篇
  1999年   15篇
  1998年   19篇
  1995年   20篇
  1994年   20篇
  1992年   16篇
  1991年   21篇
  1990年   15篇
  1987年   15篇
  1986年   17篇
  1985年   27篇
  1984年   29篇
  1983年   27篇
  1982年   39篇
  1981年   23篇
  1980年   25篇
  1979年   45篇
  1978年   25篇
  1977年   37篇
  1976年   28篇
  1975年   24篇
  1974年   19篇
  1973年   15篇
  1967年   19篇
  1959年   14篇
  1956年   20篇
  1934年   23篇
排序方式: 共有2247条查询结果,搜索用时 15 毫秒
71.
The preference for singly charged ion formation by MALDI makes it a better choice than electrospray ionization for profiling mixtures of N-glycans. For structural analysis, fragmentation of negative ions often yields more informative spectra than fragmentation of positive ones but such ions are more difficult to produce from neutral glycans under MALDI conditions. This work investigates conditions for the formation of both positive and negative ions by MALDI from N-linked glycans released from glycoproteins and their subsequent MS/MS and ion mobility behaviour. 2,4,6-Trihydroxyacetophenone (THAP) doped with ammonium nitrate was found to give optimal ion yields in negative ion mode. Ammonium chloride or phosphate also yielded prominent adducts but anionic carbohydrates such as sulfated N-glycans tended to ionize preferentially. Carbohydrates adducted with all three adducts (phosphate, chloride, and nitrate) produced good negative ion CID spectra but those adducted with iodide and sulfate did not yield fragment ions although they gave stronger signals. Fragmentation paralleled that seen following electrospray ionization providing superior spectra than could be obtained by PSD on MALDI-TOF instruments or with ion traps. In addition, ion mobility drift times of the adducted glycans and the ability of this technique to separate isomers also mirrored those obtained following ESI sample introduction. Ion mobility also allowed profiles to be obtained from samples whose MALDI spectra showed no evidence of such ions allowing the technique to be used in conditions where sample amounts were limiting. The method was applied to N-glycans released from the recombinant human immunodeficiency virus glycoprotein, gp120.  相似文献   
72.
The potential of electrospray ionization (ESI) Fourier transform ion cyclotron mass spectrometry (FTICR-MS) to assist in the structural characterization of monomeric and dimeric derivatives of the macrophage colony stimulating factor beta (rhM-CSF beta) was assessed. Mass spectrometric analysis of the 49 kDa protein required the use of sustained off-resonance irradiation (SORI) in-trap cleanup to reduce adduction. High resolution mass spectra were acquired for a fully reduced and a fully S-cyanylated monomeric derivative (approximately 25 kDa). Mass accuracy for monomeric derivatives was better than 5 ppm, after applying a new calibration method (i.e., DeCAL) which eliminates space charge effects upon high accuracy mass measurements. This high mass accuracy allowed the direct determination of the exact number of incorporated cyanyl groups. Collisionally induced dissociation using SORI yielded b- and y-fragment ions within the N- and C-terminal regions for the monomeric derivatives, but obtaining information on other regions required proteolytic digestion, or potentially the use of alternative dissociation methods.  相似文献   
73.
The preparation of new organosoluble Lewis acidic polyoxometalates (POMs) is reported. These complexes were prepared by the incorporation of Zr, Sc, and Y atoms into the corresponding monolacunary Dawson [P2W17O61]10? and Keggin [PW11O39]7? polyoxotungstates. The catalytic activity of these compounds was evaluated for C? C bond formation in the Diels–Alder, Mannich, and Mukaiyama‐type reactions. Comparisons with previously described Lewis acidic POMs are reported. Competitive reactions between imines and aldehydes or between various imines demonstrated that fine tuning of the reactivity could be reached by varying the metal atom incorporated into the polyanionic framework. A series of experiments that employed pyridine derivatives allowed us to distinguish between the Lewis and induced Brønsted acidity of the POMs. These catalysts activate imines in a Lewis acidic way, whereas aldehydes are activated by indirect Brønsted catalysis.  相似文献   
74.
The presence of free OH (OH not H-bonded) in bulk water is a key element for the determination of its molecular structure. The OH covalent bond infrared (IR) absorption is highly sensitive to the molecular environment. For this reason, IR spectroscopy is used for the determination of free OH. A workable definition of this is obtained with methanol (MeOH) in hexane where minute quantities of free OH are present. These absorb at 3654?cm(-1) (a 27?cm(-1) redshift from the gas position) with a full width at half height of 35?cm(-1). The IR spectrum of water between room temperature and 95?°C does not display such a band near 3650?cm(-1). This indicates that we do not see, in the IR spectra, the "free" OH group. From this we conclude that it is not present in liquid water at least down to the 1000 ppm level which is the limit of detectivity of our spectrometer. Other spectroscopic considerations of methanol and water in acetonitrile solutions indicate that weak H-bonds are also not present in liquid water.  相似文献   
75.
A wide array of readily prepared pivalates of ketoximes can be converted to the corresponding ketones in good yields by treatment with iron powder in THF containing catalytic amounts of both trimethylsilyl chloride and glacial acetic acid at room temperature for 30 min, followed by a brief aqueous workup.  相似文献   
76.
77.
Nuclear magnetic resonance (NMR) studies have benefited tremendously from the steady increase in the strength of magnetic fields. Spectacular improvements in both sensitivity and resolution have enabled the investigation of molecular systems of rising complexity. At very high fields, this progress may be jeopardized by line broadening, which is due to chemical exchange or relaxation by chemical shift anisotropy. In this work, we introduce a two‐field NMR spectrometer designed for both excitation and observation of nuclear spins in two distinct magnetic fields in a single experiment. NMR spectra of several small molecules as well as a protein were obtained, with two dimensions acquired at vastly different magnetic fields. Resonances of exchanging groups that are broadened beyond recognition at high field can be sharpened to narrow peaks in the low‐field dimension. Two‐field NMR spectroscopy enables the measurement of chemical shifts at optimal fields and the study of molecular systems that suffer from internal dynamics, and opens new avenues for NMR spectroscopy at very high magnetic fields.  相似文献   
78.
79.
80.
Quantum chemical calculations by using density functional theory at the B3LYP level have been carried out to elucidate the reaction course for the addition of ethylene to [OsO2(CH2)2] (1). The calculations predict that the kinetically most favorable reaction proceeds with an activation barrier of 8.1 kcal mol(-1) via [3+2] addition across the O=Os=CH2 moiety. This reaction is -42.4 kcal mol(-1) exothermic. Alternatively, the [3+2] addition to the H2C=Os=CH2 fragment of 1 leads to the most stable addition product 4 (-72.7 kcal mol(-1)), yet this process has a higher activation barrier (13.0 kcal mol(-1)). The [3+2] addition to the O=Os=O fragment yielding 2 is kinetically (27.5 kcal mol(-1)) and thermodynamically (-7.0 kcal mol(-1)) the least favorable [3+2] reaction. The formal [2+2] addition to the Os=O and Os=CH2 double bonds proceeds by initial rearrangement of 1 to the metallaoxirane 1 a. The rearrangement 1-->1 a and the following [2+2] additions have significantly higher activation barriers (>30 kcal mol(-1)) than the [3+2] reactions. Another isomer of 1 is the dioxoosmacyclopropane 1 b, which is 56.2 kcal mol(-1) lower in energy than 1. The activation barrier for the 1-->1 b isomerization is 15.7 kcal mol(-1). The calculations predict that there are no energetically favorable addition reactions of ethylene with 1 b. The isomeric form 1 c containing a peroxo group is too high in energy to be relevant for the reaction course. The accuracy of the B3LYP results is corroborated by high level post-HF CCSD(T) calculations for a subset of species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号