首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2034篇
  免费   53篇
  国内免费   11篇
化学   1468篇
晶体学   16篇
力学   88篇
数学   260篇
物理学   266篇
  2023年   12篇
  2022年   32篇
  2021年   46篇
  2020年   21篇
  2019年   28篇
  2018年   25篇
  2017年   26篇
  2016年   55篇
  2015年   54篇
  2014年   53篇
  2013年   103篇
  2012年   112篇
  2011年   116篇
  2010年   82篇
  2009年   60篇
  2008年   142篇
  2007年   144篇
  2006年   131篇
  2005年   119篇
  2004年   116篇
  2003年   78篇
  2002年   84篇
  2001年   38篇
  2000年   26篇
  1999年   24篇
  1998年   26篇
  1997年   22篇
  1996年   39篇
  1995年   22篇
  1994年   20篇
  1993年   19篇
  1992年   18篇
  1991年   14篇
  1990年   15篇
  1989年   10篇
  1988年   8篇
  1987年   8篇
  1986年   8篇
  1985年   20篇
  1984年   11篇
  1983年   6篇
  1982年   11篇
  1981年   21篇
  1980年   11篇
  1979年   9篇
  1978年   10篇
  1977年   8篇
  1976年   7篇
  1973年   4篇
  1971年   4篇
排序方式: 共有2098条查询结果,搜索用时 15 毫秒
41.
Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles   总被引:1,自引:0,他引:1  
Novel organic (positively charged fullerene)-inorganic (negatively charged CdTe nanoparticle) nanoensembles were devised through electrostatic interactions and probed as versatile donor-acceptor hybrids. Photoirradiation of their homogeneous solutions, containing the electrostatically packed components, let to very long-lived (1.3 ms) charge separated states.  相似文献   
42.
Summary Crystals of the title compounds are both monoclinic, with unit cell dimensions:a = 9.293(5),b = 10.122(5),c = 16.737(7) Å. = 103.44(3)°,Z = 4, space groupP21/c for the cobalt derivative;a = 13.1ß5(7),b = 17.546(ß),c = 6.871(3) Å, = 107.01(4)°Z = 4, space groupP21/n for the copper derivative. The structures were solved from diffractometer data by the heavy-atom technique for the first compound and by direct methods for the second compound. Refinement by block diagonal least-squares gaveR = 5.9% for 3511 independent reflections andR = 8.8% for 2885 independent reflections for the cobalt and copper compound respectively. In both compounds the biguanide moiety behaves as a bidentate chelating ligand in a symmetrical tautomeric form, but it is deprotonated in the octahedral cobalt compound and neutral in the square planar copper compound.  相似文献   
43.
The main light-harvesting fraction from Pelvetia canaliculata was isolated on a sucrose density gradient from digitonin-solubilized chloroplasts. After further solubilization by dodecyl maltoside, the bulk fraction was separated into two subunits by preparative isoelectric focusing. The more acidic brown fraction was mainly composed of 22 kDa polypeptides having an apparent pI of 4.55. Its pigment composition was very simple, containing chlorophyll (Chi) a, Chi c and fucoxanthin. The in vivo spectral properties of fucoxanthin, namely a shift in light absorption to the green and efficient energy transmission to Chi a, were conserved in this subunit. No xanthophyll associated with photoprotection was found in this band, even when obtained from photoinhibited thalli. The less acidic green band contained predominantly 22 kDa polypeptides that were resolved into numerous components by denaturing isoelectric focusing. Its pigment composition was more complex, containing, in addition, pigments of the so-called xanthophyll cycle. In photoinhibited thalli, about half of the violaxanthin was converted into antheraxanthin and zeaxanthin. All the pigments of the xanthophyll cycle were specifically associated with this subunit, and it may thus have a central role in the thermal dissipation of the absorbed light energy as postulated for light-harvesting complex II isolated from green plants.  相似文献   
44.
The silver-assisted ligand metathesis reaction involving a platinum(II) complex of formula [PtClMe(N,N-chelate)] with acetonitrile has been investigated. By using a suitably hindered N,N-chelate, an otherwise hardly detectable trinuclear species has been isolated and characterized through X-ray diffractometry. The trinuclear cation consists of two nearly orthogonal [PtCl(Me)(N,N-chelate)] square-planar units entrapping an Ag(+) cation through the chloride ligands that, acting as bidentate, form a linear AgCl(2) unit with two nonequivalent Ag-Cl bonds. The residual acidity of the silver cation is satisfied by one secondary Ag-Pt interaction [Ag-Pt(1) = 2.82 A] in which the platinum atom acts as a donor. Kinetic studies have demonstrated that the silver assistance operates both through a simple associative step and through a pathway in which the above trinuclear complex is an active intermediate. In a noncoordinating solvent the latter species evolves with AgCl loss and formation of a dinuclear Pt,Pt complex showing a rare single chloride bridge.  相似文献   
45.
The realization of a reliable receptor biosensor requires stable, long-lasting, reconstituted biomembranes able to supply a suitable biomimetic environment where the receptor can properly work after incorporation. To this end, we developed a new method for preparing stable biological membranes that couple the biomimetic properties of BLMs (bilayer lipid membranes) with the high stability of HBMs (hybrid bilayer membranes); this gives rise to an innovative assembly, named MHBLM (mixed hybrid bilayer lipid membrane). The present work deals with the characterization of biosensors achieved by embedding an ionotropic glutamate receptor (GluR) on MHBLM. Thanks to signal (transmembrane current) amplification, which is typical of natural receptors, the biosensor here produced detects glutamate at a level of nmol L(-1). The transmembrane current changes linearly vs glutamate up to 100 nmol L(-1), while the limit of detection is 1 nmol L(-1). In addition, the biosensor response can be modulated both by receptor agonists (glycine) and antagonists (Mg(2+)) as well, and by exploiting the biosensor response, the distribution of different kinds of ionotropic GluR present in the purified sample, and embedded in MHBLM, was also evaluated. Finally, one of the most important aspects of this investigation is represented by the high stability of the biomimetic system, which allows the use of biosensor under flowing conditions, where the solutions flow on both biomembrane faces.  相似文献   
46.
Alkaline digestion of soil samples, which is recommended for minimizing Cr(III)–Cr(VI) interconversions during the extraction of Cr(VI), may also solubilize humic matter (HM). The latter is responsible for both positive and negative interference in the analysis of Cr(VI) in the extract by the diphenylcarbazide (DPC) method. Humic compounds indeed absorb light at 540 nm as the Cr-DPC product and are also able to rapidly reduce Cr(VI) under the pH conditions of the standard DPC method. To prevent any risk of interference and make the DPC method applicable to soil extracts, a new protocol is proposed. This consists of three successive steps: (1) extraction of Cr(VI) by the U.S.EPA method 3060A in the presence of Mg2+; (2) batch removal of solubilised HM by the XAD-7 sorbent at pH 3.0 ± 0.1 with 3–5 min contact time; (3) analysis of Cr(VI) with the DPC method at pH 3.0 ± 0.1. The application of this new protocol to the soil product SQC-012 Lot 4 certified by R.T. Corporation (RTC, USA) gave significantly lower Cr(VI) concentrations and smaller variability compared to certified values (46.5 ± 2.3 instead of 153 ± 32.6 mg/kg). The new protocol was validated by Cr(VI) and Cr(III) spikes either to the soil/extractant suspension or to the exctract. Cr(VI) results in the wide range of acceptance limits (104–202 mg/kg) reported by RTC were only obtained when the U.S.EPA method 3060A without the addition of Mg2+ and DPC analysis at pH 1.0 were applied. The latter procedure appears questionable since it leads to largely variable results which reflect the complex role played by humic matter in the determination of Cr(VI) and the instability of Cr(III) during the extraction.  相似文献   
47.
The organic functionalisation of carbon nanotubes can improve substantially their solubility and biocompatibility profile; as a consequence, their manipulation and integration into biological systems has become possible so that functionalised carbon nanotubes hold currently strong promise as novel systems for the delivery of drugs, antigens and genes.  相似文献   
48.
Three-component molecular systems (redox active subunit)-spacer-(light-emitting fragment) can operate as fluorescence switches, following the alternate addition of an oxidizing agent and a reducing agent (or the adjustment of the potential of the working electrode in an electrolysis experiment). The redox active subunit typically consists of a metal centred redox couple (M(n+1)+/Mn+), encircled by a macrocyclic receptor, and switching efficiency requires that one of the two oxidation states quenches the proximate fluorophore and the other does not. Four ON/OFF systems, based on either the CuII/CuI or NiIII/NiII couple, will be discussed. The nature of the quenching process responsible for the OFF state, either electron transfer or energy transfer, is related to the length and to the flexibility-rigidity of the spacer.  相似文献   
49.
Hydrogenases catalyze the reversible oxidation of dihydrogen to protons and electrons. The structures of two Fe-only hydrogenases have been recently reported [Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853-1858. Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, E. C.; Fontecilla-Camps, J. C. Structure 1999, 7, 13-23], showing that the likely site of dihydrogen activation is the so-called [2Fe](H) cluster, where each Fe ion is coordinated by CO and CN(-) ligands and the two metals are bridged by a chelating S-X(3)-S ligand. Moreover, the presence of a water molecule coordinated to the distal Fe2 center suggested that the Fe2 atom could be a suitable site for binding and activation of H(2). In this contribution, we report a density functional theory investigation of the structural and electronic properties of complexes derived from the [(CO)(CH(3)S)(CN)Fe(II)(mu-PDT)Fe(II)(CO)(2)(CN)](-1) species, which is related to the [2Fe](H) cluster observed in Fe-only hydrogenases. Our results show that the structure of the [2Fe](H) cluster observed in the enzyme does not correspond to a stable form of the isolated cluster, in the absence of the protein. As a consequence, the reactivity of [(CO)(CH(3)S)(CN)Fe(II)(mu-PDT)Fe(II)(CO)(2)(CN)](-1) derivatives in solution may be expected to be quite different from that of the active site of Fe-only hydrogenases. In fact, the most favorable path for H(2) activation involves the two metal atoms and one of the bridging S atoms and is associated with a very low activation energy (5.3 kcal mol(-1)). The relevance of these observations for the catalytic properties of Fe-only hydrogenases is discussed in light of available experimental and theoretical data.  相似文献   
50.
Density functional theory has been used to investigate complexes related to the [2Fe](H) subcluster of [Fe]-hydrogenases. In particular, the effects on structural and electronic properties of redox state and ligands with different sigma-donor pi-acceptor character, which replace the cysteine residue coordinated to the [2Fe](H) subcluster in the enzyme, have been investigated. Results show that the structural and electronic properties of fully reduced Fe(I)Fe(I) complexes are strongly affected by the nature of the ligand L, and in particular, a progressive rotation of the Fe(d)(CO)(2)(CN) group, with a CO ligand moving from a terminal to a semibridged position, is observed going from the softest to the hardest ligand. For the partially oxidized Fe(I)Fe(II) complexes, two isomers of similar stability, characterized either by a CO ligand in a terminal or bridged position, have been observed. The switching between the two forms is associated with a spin and charge transfer between the two iron atoms, a feature that could be relevant in the catalytic mechanism of dihydrogen activation. The structure of the fully oxidized Fe(II)Fe(II) models is extremely dependent on the nature of the L ligand; one CO group coordinated to Fe(d) switches from terminal to bridging position going from complexes characterized by neutral to anionic L ligands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号