首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   570篇
  免费   13篇
  国内免费   4篇
化学   349篇
晶体学   6篇
力学   12篇
数学   68篇
物理学   152篇
  2023年   3篇
  2021年   5篇
  2020年   7篇
  2019年   5篇
  2018年   8篇
  2017年   7篇
  2016年   16篇
  2015年   9篇
  2014年   13篇
  2013年   44篇
  2012年   25篇
  2011年   31篇
  2010年   13篇
  2009年   24篇
  2008年   31篇
  2007年   25篇
  2006年   32篇
  2005年   40篇
  2004年   25篇
  2003年   36篇
  2002年   10篇
  2001年   6篇
  2000年   9篇
  1999年   7篇
  1998年   6篇
  1997年   3篇
  1996年   7篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   8篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   9篇
  1987年   6篇
  1986年   17篇
  1985年   11篇
  1982年   4篇
  1981年   3篇
  1978年   5篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1972年   4篇
  1970年   2篇
  1969年   3篇
  1968年   4篇
  1966年   2篇
  1963年   3篇
排序方式: 共有587条查询结果,搜索用时 15 毫秒
581.
The selective functionalizations of the fundamental hydrogen-terminated nanodiamonds triamantane 1, as well as the most symmetrical representative of the tetramantanes (C(2h)-[121]tetramantane 2) were elaborated. Electrophilic reagents (Br2, HNO3) predominantly attack the medial C-H positions of the cages; bromination of 2 gave the medial 2-bromo derivative almost exclusively. Highly selective apical substitution in 1 and 2 is possible either under single-electron-transfer oxidations via hydrocarbon radical cations or through photoacetylation with diacetyl. The mono- and the bis-acetyl derivatives of 1 and 2 were converted through Bayer-Villiger oxidation and subsequent hydrolysis to the respective apical mono- and dihydroxy derivatives. This exceptional synthetic specificity facilitates the transformation of 2, and perhaps larger nanodiamond molecules, into functionalized building blocks needed for a wide range of applications such as nanotechnology.  相似文献   
582.
A stereoselective synthesis of the C-glycoside analogue of beta-D-galactosyl-(5R,2S)-hydroxylysine (1) has been achieved starting from tetra-O-benzyl-D-galactopyranosyl lactone. The synthesis involved establishment of three stereogenic centers in an unambiguous manner. A facially selective Grignard reaction followed by a silane reduction was used for the anomeric position of the C-galactose residue. An Evans allylation established the configuration of the delta-aminomethylene group of the hydroxylysine moiety, whereas an asymmetric hydrogenation utilizing Burk's catalyst was used for the alpha-amino acid moiety itself. The synthesis was completed in 17 steps with an overall yield of 18%, resulting in the most complex and functionalized C-glycoside analogue of a naturally occurring glycosylated amino acid prepared to date. In addition, amino acid 1 was incorporated in a glycopeptide from type II collagen known to be crucial for the response of autoimmune T cells obtained in models of rheumatoid arthritis. A preliminary immunological study revealed that four out of five members in a panel of T cell hybridomas were able to recognize this C-linked glycopeptide when presented by A(q) class II MHC molecules.  相似文献   
583.
Molecular dynamics (MD) is an essential tool for correlating collision cross-section data determined by ion mobility spectrometry (IMS) with candidate (calculated) structures. Conventional methods used for ion structure determination rely on comparing the measured cross-sections with the calculated collision cross-section for the lowest energy structure(s) taken from a large pool of candidate structures generated through multiple tiers of simulated annealing. We are developing methods to evaluate candidate structures from an ensemble of many conformations rather than the lowest energy structure. Here, we describe computational simulations and clustering methods to assign backbone conformations for singly-protonated ions of the model peptide (NH2-Met-Ile-Phe-Ala-Gly-Ile-Lys-COOH) formed by both MALDI and ESI, and compare the structures of MIFAGIK derivatives to test the ‘sensitivity’ of the cluster analysis method. Cluster analysis suggests that [MIFAGIK + H]+ ions formed by MALDI have a predominantly turn structure even though the low-energy ions prefer partial helical conformers. Although the ions formed by ESI have collision cross-sections that are different from those formed by MALDI, the results of cluster analysis indicate that the ions backbone structures are similar. Chemical modifications (N-acetyl, methylester as well as addition of Boc or Fmoc groups) to MIFAGIK alter the distribution of various conformers; the most dramatic changes are observed for the [M + Na]+ ion, which show a strong preference for random coil conformers owing to the strong solvation by the backbone amide groups.  相似文献   
584.
Tin (Sn) induced (1 × 2) reconstructions on GaAs(100) and InAs(100) substrates have been studied by low energy electron diffraction (LEED), photoelectron spectroscopy, scanning tunneling microscopy/spectroscopy (STM/STS) and ab initio calculations. The comparison of measured and calculated STM images and surface core-level shifts shows that these surfaces can be well described with the energetically stable building blocks that consist of Sn–III dimers. Furthermore, a new Sn-induced (1 × 4) reconstruction was found. In this reconstruction the occupied dangling bonds are closer to each other than in the more symmetric (1 × 2) reconstruction, and it is shown that the (1 × 4) reconstruction is stabilized as the adatom size increases.  相似文献   
585.
586.
The decrease of the droplet radii of silicone oil dispersed in a polystyrene matrix at a temperature of 140°C with increasing time was measured by NMR dynamic imaging. From this time dependence the diffusion coefficient of the silicone oil into the matrix was calculated to be 7 · 10−18 m2 · s−1. The uptake of the silicone oil in the polystyrene matrix was confirmed by broad line NMR measurements.  相似文献   
587.
Catalysis inside molecular cages and capsules has attracted an increasing amount of attention over the last decade. While many examples of the catalysis of reactions with cationic intermediates and transition states are known, those with anionic counterparts are scarce. One limiting factor is access to suitably sized cationic iminopyridine-based cages that are stable towards water and anionic/nucleophilic guest molecules. This study aimed at identifying such suitable cages. In this full paper, we describe the journey that finally led to the synthesis of a novel iminopyridine-based tetrahedron that can bind larger organic anions with binding constants of up to 850 M−1 in MeCN−d3/H2O=9 : 1. Importantly, it also displays stability in basic aqueous acetonitrile. Surprisingly, investigations towards catalysis of reactions with anionic transition states did not indicate rate accelerations in the presence of the cage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号