首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9252篇
  免费   501篇
  国内免费   27篇
化学   6581篇
晶体学   61篇
力学   135篇
数学   1132篇
物理学   1871篇
  2023年   67篇
  2022年   92篇
  2021年   133篇
  2020年   246篇
  2019年   208篇
  2018年   96篇
  2017年   133篇
  2016年   325篇
  2015年   296篇
  2014年   360篇
  2013年   444篇
  2012年   583篇
  2011年   631篇
  2010年   361篇
  2009年   319篇
  2008年   465篇
  2007年   465篇
  2006年   415篇
  2005年   360篇
  2004年   327篇
  2003年   271篇
  2002年   265篇
  2001年   163篇
  2000年   151篇
  1999年   138篇
  1998年   104篇
  1997年   112篇
  1996年   114篇
  1995年   128篇
  1994年   145篇
  1993年   116篇
  1992年   125篇
  1991年   104篇
  1990年   81篇
  1989年   89篇
  1988年   67篇
  1987年   68篇
  1986年   59篇
  1985年   75篇
  1984年   64篇
  1983年   66篇
  1982年   65篇
  1981年   63篇
  1980年   71篇
  1979年   66篇
  1978年   60篇
  1977年   63篇
  1976年   48篇
  1974年   49篇
  1973年   51篇
排序方式: 共有9780条查询结果,搜索用时 15 毫秒
51.
52.
The π? pe + e ? n and π+ ne + e ? p reaction cross sections are calculated below and in the vicinity of the vector-meson (?0,ω) production threshold. These processes are largely responsible for the emission of e +e? pairs in pion-nucleus reactions and contribute to the dilepton spectra observed in relativistic heavy ion collisions. They are dominated by the decay of low-lying baryon resonances into vector-meson-nucleon channels. The vector mesons materialize subsequently into e + e? pairs. Using πN→?0 N and πN→ωN, amplitudes calculated in the center of mass energy interval 1.4 < √s<1.8 GeV, we compute the π? pe + e ? n and π+ ne + e ? p reaction cross sections in these kinematics. Below the vector-meson production threshold, the π0?ω interference in the e + e? channel appears largely destructive for the π? pe + e ? n cross section and constructive for the π+ ne + e ? p cross section. The pion beam and the HADES detector at GSI offer a unique possibility to measure these effects. Such data would provide strong constraints on the coupling of vector-meson-nucleon channels to low-lying baryon resonances.  相似文献   
53.
Belato  D.  Balthazar  J. M.  Weber  H. I. 《Nonlinear dynamics》2003,34(3-4):309-317
The investigation of the behavior of a nonlinear system consists in theanalysis of different stages of its motion, where the complexity varieswith the proximity of a resonance region. Near this region the stabilitydomain of the system undergoes sudden changes due basically tocompetition and interaction between periodic and saddle solutions insidethe phase portrait, leading to the occurrence of the most differentphenomena. Depending of the domain of the chosen control parameter,these events can reveal interesting geometric features of the system sothat the phase portrait is not capable to express all them, since theprojection of these solutions on the two-dimensional surface can hidesome aspects of these events. In this work we will investigate thenumerical solutions of a particular pendulum system close to a secondaryresonance region, where we vary the control parameter in a restrictdomain in order to draw a preliminary identification about what happenswith this system. This domain includes the appearance of non-hyperbolicsolutions where the basin of attraction in the center of the phaseportrait diminishes considerably, almost disappearing, and afterwardsits size increases with the direction of motion inverted. Thisphenomenon delimits a boundary between low and high frequency of theexternal excitation.  相似文献   
54.
Several new infrared absorption bands for 32S16O3 have been measured and analyzed. The principal bands observed were ν1+ν2 (at 1561 cm−1), ν1+ν4 (at 1594 cm−1), ν3+ν4 (at 1918 cm−1), and 3ν3 (at 4136 cm−1). Except for 3ν3, these bands are very complicated because of (a) the Coriolis coupling between ν2 and ν4, (b) the Fermi resonance between ν1 and 2ν4, (c) the Fermi resonance between ν1 and 2ν2, (d) ordinary l-type resonance that couples levels that differ by 2 in both the k and l quantum numbers, and (e) the vibrational l-type resonance between the A1 and A2 levels of ν3+ν4. The unraveling of the complex pattern of these bands was facilitated by a systematic approach to the understanding of the various interactions. Fortunately, previous work on the fundamentals permitted good estimates of many constants necessary to begin the assignments and the fit of the measurements. In addition, the use of hot band transitions accompanying the ν3 band was an essential aid in fitting the ν3+ν4 transitions since these could be directly observed for only one of four interacting states. From the hot band analysis we find that the A1 vibrational level is 3.50 cm−1 above the A2 level, i.e., r34=1.75236(7) cm−1. In the case of the 3ν3 band, the spectral analysis is straightforward and a weak Δk=±2, Δl3=±2 interaction between the l3=1 and l3=3 substates locates the latter A1 and A2 “ghost” states 22.55(4) cm−1 higher than the infrared accessible l3=1 E state.  相似文献   
55.
On Sesquiselenides of the Lanthanoids: Single Crystals of C‐type Ce2Se3, U‐type Gd2Se3, and Z‐type Lu2Se3 Single crystals of lanthanoid sesquiselenides (M2Se3; here: M = Ce, Gd, Lu) are accessible through conversion of the elements (lanthanoid and selenium) in molar ratios of 2:3 within seven days at 850 °C from evacuated silica ampoules if equimolar amounts of NaCl serve as a flux. In the case of Ce2Se3 (a = 897.74(6) pm) und Gd2Se3 (a = 872.56(5) pm) the cubic C‐type (I4¯3d, Z = 5.333) forms as dark red beads, whereas the orthorhombic Z‐type (Fddd, Z = 16) emerges for Lu2Se3 (a = 1125.1(1), b = 798.06(8), c = 2387.7(2) pm) as orange‐yellow bricks. Upon oxidation of monochloride hydrides (MClHx or AyMClHx; M = Ce, Gd, Lu; x = 1; A = Li, Na; y = 0.5) with selenium in arc‐welded tantalum ampoules the same main products appear with C‐Ce2Se3 and Z‐Lu2Se3, even with a surplus of NaCl or LiCl as fluxing agent. In the case of Gd2Se3, however, black‐red needles of the orthorhombic U‐type (Pnma, Z = 4; a = 1118.2(1), b = 403.48(4); c = 1097.1(1) pm) are yielded instead of C‐Gd2Se3. C‐Ce2Se3 crystallizes in a cation‐deficient Th3P4‐type structure (Ce2S3 type) according to Ce2.6670.333Se4 (Z = 4) or with Z = 5.333 for the empirical formula Ce2Se3. Here, Ce3+ is coordinated by eight Se2— anions trigon‐dodecahedrally. In U‐Gd2Se3 (U2S3 type) two crystallographically independent Gd3+ cations with coordination numbers of 7 (Gd1) and 7+1 (Gd2), respectively, are present, exhibiting mono‐ or bicapped trigonal prisms as coordination polyhedra. The crystal structure of Z‐Lu2Se3 (Sc2S3 type) shows two different Lu3+ cations as well, which now both reside in octahedral coordination of six Se2— anions each.  相似文献   
56.
57.
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号