首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1709篇
  免费   57篇
  国内免费   2篇
化学   934篇
晶体学   3篇
力学   83篇
数学   346篇
物理学   402篇
  2023年   16篇
  2022年   51篇
  2021年   62篇
  2020年   44篇
  2019年   56篇
  2018年   47篇
  2017年   34篇
  2016年   86篇
  2015年   64篇
  2014年   47篇
  2013年   94篇
  2012年   119篇
  2011年   130篇
  2010年   63篇
  2009年   49篇
  2008年   84篇
  2007年   85篇
  2006年   99篇
  2005年   69篇
  2004年   73篇
  2003年   68篇
  2002年   33篇
  2001年   21篇
  2000年   20篇
  1999年   12篇
  1998年   9篇
  1997年   10篇
  1996年   16篇
  1995年   9篇
  1994年   8篇
  1993年   8篇
  1992年   7篇
  1991年   9篇
  1990年   4篇
  1989年   10篇
  1988年   5篇
  1987年   5篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1980年   6篇
  1979年   7篇
  1969年   4篇
  1934年   4篇
  1915年   5篇
  1906年   3篇
  1905年   3篇
  1893年   3篇
  1891年   3篇
  1880年   3篇
排序方式: 共有1768条查询结果,搜索用时 74 毫秒
991.
Catalytic CO2 reduction to fuels and chemicals is a major pursuit in reducing greenhouse gas emissions. One approach utilizes the reverse water‐gas shift reaction, followed by Fischer–Tropsch synthesis, and iron is a well‐known candidate for this process. Some attempts have been made to modify and improve its reactivity, but resulted in limited success. Now, using ruthenium–iron oxide colloidal heterodimers, close contact between the two phases promotes the reduction of iron oxide via a proximal hydrogen spillover effect, leading to the formation of ruthenium–iron core–shell structures active for the reaction at significantly lower temperatures than in bare iron catalysts. Furthermore, by engineering the iron oxide shell thickness, a fourfold increase in hydrocarbon yield is achieved compared to the heterodimers. This work shows how rational design of colloidal heterostructures can result in materials with significantly improved catalytic performance in CO2 conversion processes.  相似文献   
992.
This perspective article aims to underline how cutting‐edge synchrotron radiation spectroscopies such as extended X‐ray absorption spectroscopy (EXAFS), X‐ray absorption near edge structure (XANES), high resolution fluorescence detected (HRFD) XANES, X‐ray emission spectroscopy (XES) and resonant inelastic X‐ray scattering (RIXS) have played a key role in the structural and electronic characterization of Ti‐based catalysts and photocatalysts, representing an important additional value to the outcomes of conventional laboratory spectroscopies (UV‐Vis, IR, Raman, EPR, NMR etc.). Selected examples are taken from the authors research activity in the last two decades, covering both band‐gap and shape engineered TiO2 materials and microporous titanosilicates (ETS‐10, TS‐1 and Ti?AlPO‐5). The relevance of the state of the art simulation techniques as a support for experiments interpretation is underlined for all the reported examples.  相似文献   
993.
994.
We classify the dispersive Poisson brackets with one dependent variable and two independent variables, with leading order of hydrodynamic type, up to Miura transformations. We show that, in contrast to the case of a single independent variable for which a well-known triviality result exists, the Miura equivalence classes are parametrised by an infinite number of constants, which we call numerical invariants of the brackets. We obtain explicit formulas for the first few numerical invariants.  相似文献   
995.
We compare three thermodynamically consistent Scharfetter–Gummel schemes for different distribution functions for the carrier densities, including the Fermi–Dirac integral of order 1/2 and the Gauss–Fermi integral. The most accurate (but unfortunately also most costly) generalized Scharfetter–Gummel scheme requires the solution of an integral equation. Since one cannot solve this integral equation analytically, several modified Scharfetter–Gummel schemes have been proposed, yielding explicit flux approximations to the implicit generalized flux. The two state-of-the-art modified fluxes used in device simulation software are the diffusion-enhanced flux and the inverse activity coefficient averaging flux. We would like to study which of these two modified schemes approximates the implicit flux better. To achieve this, we propose a new method to solve the integral equation numerically based on Gauss quadrature and Newton’s method. This numerical procedure provides a highly accurate reference flux, enabling us to compare the quality of the two modified Scharfetter–Gummel schemes. We extend previous results (Farrell in J Comput Phys 346:497–513, 2017a) showing that the diffusion-enhanced ansatz leads to considerably lower flux errors for the Blakemore approximation to the physically more relevant Fermi–Dirac and Gauss–Fermi statistics.  相似文献   
996.
We analyze optimized explicit Runge–Kutta schemes (RK) for computational aeroacoustics, and wave propagation phenomena in general. Exploiting the analysis developed in [S. Pirozzoli, Performance analysis and optimization of finite-difference schemes for wave propagation problems, J. Comput. Phys. 222 (2007) 809–831], we rigorously evaluate the performance of several time integration schemes in terms of appropriate error and cost metrics, and provide a general strategy to design Runge–Kutta methods tailored for specific applications. We present families of optimized second- and third-order Runge–Kutta schemes with up to seven stages, and describe their implementation in the framework of Williamson’s 2N2N-storage formulation [J.H. Williamson, Low-storage Runge–Kutta schemes, J. Comput. Phys. 35 (1980) 48–56]. Numerical simulations of the 1D linear advection equation and of the 2D linearized Euler equations are performed to demonstrate the validity of the theory and to quantify the improvement provided by optimized schemes.  相似文献   
997.
We address binary communication channels with symbols encoded in two states of a finite dimensional Hilbert spaces. For pure states we confirm that the optimal decoding stage, maximizing the mutual information, coincides with the projective measure that minimizes the error probability (Bayes criterion). On the other hand, we prove that for communication schemes based on mixed states the optimal decoding, still being a projective measurement, is generally different from the Bayes' one, unless the two density operators commute.  相似文献   
998.
We studied the effect of impurity on the first order superconducting (SC) transition and the high field-low temperature (HFLT) SC state of CeCoIn5 by measuring the specific heat of CeCo(In1-xCdx)_{5} with x=0.0011, 0.0022, and 0.0033 and CeCo(In1-xHgx)_{5} with x=0.000 16, 0.000 32, and 0.000 48 at temperatures down to 0.1 K and fields up to 14 T. Cd substitution rapidly suppresses the crossover temperature T0, where the SC transition changes from second to first order, to T=0 K with x=0.0022 for H parallel[100], while it remains roughly constant up to x=0.0033 for H parallel[001]. The associated anomaly of the proposed FFLO state in Hg-doped samples is washed out by x=0.000 48, while remaining at the same temperature, indicating high sensitivity of that state to impurities. We interpret these results as supporting the nonmagnetic, possibly FFLO, origin of the HFLT state in CeCoIn5.  相似文献   
999.
The occurrence of nonadiabatic effects in the vibrational properties of metals has been predicted since the 1960s, but hardly confirmed experimentally. We report the first fully ab initio calculations of nonadiabatic frequencies of a number of conventional (hcp Ti and Mg) and layered metals (MgB2, CaC6, and other intercalated graphites). Nonadiabatic effects can be spectacularly large (up to 30% of the phonon frequencies) in both cases, but they can only be experimentally observed in the Raman spectra of layered compounds. In layered metals nonadiabatic effects are crucial to explaining the observed Raman shifts and linewidths. Moreover, we show that those quantities can be used to extract the electron momentum-relaxation time.  相似文献   
1000.
Experimental evidence concerning the dependence of the intrinsic viscosity [η] on molecular weight M in the low molecular weight range (from oligomers to M = 5 × 104) has been collected in a variety of solvents for about ten polymers, i.e., polyethylene, poly(ethylene oxide), poly(propylene oxide), polydimethylsiloxane, polyisobutylene, poly(vinylacetate), poly(methyl methacrylate), polystyrene, poly-α-methylstyrene, and some cellulose derivatives. In theta solvents, the constancy of the ratio [η]Θ/M0.5 extends down to values of M much lower than those predicted by current hydrodynamic theories. In good solvents, and on decreasing M, the polymers examined, with the exception of polyethylene and some cellulose derivatives, show a decrease in the exponent a of the Mark-Houwink equation [η] = KMa. This upward curvature gives rise to the existence of a more or less extended linear region where the equation [η] = K0M0.5 is obeyed. Below the linear range, i.e., for even shorter chains, the exponent a can increase, i.e., polydimethylsiloxane, or decrease below 0.5, i.e., poly(ethylene oxide), depending on the particular chain properties. These different dependences have been discussed in terms of: (a) variations of thermodynamic interactions with molecular weight; (b) variations of conformational characteristics (as for instance the ratio) 〈r02/nl2〉, where 〈r02〉 is the unperturbed mean square end-to-end distance and n is the number of bonds each of length l; (c) hydrodynamic properties of short chains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号