首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   540篇
  免费   18篇
  国内免费   5篇
化学   376篇
晶体学   6篇
力学   3篇
数学   79篇
物理学   99篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   6篇
  2019年   9篇
  2018年   8篇
  2017年   9篇
  2016年   8篇
  2015年   12篇
  2014年   20篇
  2013年   39篇
  2012年   36篇
  2011年   58篇
  2010年   22篇
  2009年   12篇
  2008年   33篇
  2007年   40篇
  2006年   48篇
  2005年   50篇
  2004年   25篇
  2003年   27篇
  2002年   19篇
  2001年   6篇
  2000年   9篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1977年   1篇
  1966年   1篇
  1962年   1篇
  1955年   1篇
  1951年   1篇
排序方式: 共有563条查询结果,搜索用时 15 毫秒
71.
72.
73.
74.
75.
The quasi-independent curvilinear coordinate approximation (QUICCA) method [K. Nemeth and M. Challacombe, J. Chem. Phys. 121, 2877 (2004)] is extended to the optimization of crystal structures. We demonstrate that QUICCA is valid under periodic boundary conditions, enabling simultaneous relaxation of the lattice and atomic coordinates, as illustrated by tight optimization of polyethylene, hexagonal boron nitride, a (10,0) carbon nanotube, hexagonal ice, quartz, and sulfur at the Gamma-point RPBE/STO-3G level of theory.  相似文献   
76.
Recursive density-matrix perturbation theory [A.M.N. Niklasson and M. Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] provides an efficient framework for the linear scaling computation of materials response properties [V. Weber, A.M.N. Niklasson, and M. Challacombe, Phys. Rev. Lett. 92, 193002 (2004)]. In this article, we generalize the density-matrix perturbation theory to include properties computed with a perturbation-dependent nonorthogonal basis. Such properties include analytic derivatives of the energy with respect to nuclear displacement, as well as magnetic response computed with a field-dependent basis. The theory is developed in the context of linear scaling purification methods, which are briefly reviewed.  相似文献   
77.
78.
Raman spectra of threadgoldite at 298 and 77K are measured and interpreted for the first time. Bands related the (UO(2))(2+) and (PO(4))(3-) stretching and bending vibrations are tenatively attributed together with the bands assigned to the stretching a and bending vibrations of water molecules and hydroxyls. Hydrogen-bonding network and H(2)O and (OH)(-1) libration modes are mentioned. U-O bond lengths in uranyls are calculated via empirical relations R(U-O)=f[nu(1) and nu(3)(UO(2))(2+)]A. They are comparable to the values inferred from the single crystal structure analysis of threadgoldite.  相似文献   
79.
The mineral allactite [Mn(7)(AsO(4))(2)(OH)(8)] is a basic manganese arsenate which is highly pleochroic. The use of the 633 nm excitation line enables quality spectra of to be obtained irrespective of the crystal orientation. The mineral is characterised by a set of sharp bands in the 770-885 cm(-1) region. Intense and sharp Raman bands are observed at 883, 858, 834, 827, 808 and 779 cm(-1). Collecting the spectral data at 77K enabled better band separation with narrower bandwidths. The observation of multiple AsO(4) stretching bands indicates the non-equivalence of the arsenate anions in the allactite structure. In comparison the infrared spectrum shows a broad spectral profile with a series of difficult to define overlapping bands. The low wavenumber region sets of bands which are assigned to the nu(2) modes (361 and 359 cm(-1)), the nu(4) modes (471, 452 and 422 cm(-1)), AsO stretching vibrations at 331 and 324 cm(-1), and bands at 289 and 271 cm(-1) which may be ascribed to MnO stretching modes. The observation of multiple bands shows the loss of symmetry of the AsO(4) units and the non-equivalence of these units in the allactite structure. The study shows that highly pleochroic minerals can be studied by Raman spectroscopy.  相似文献   
80.
Raman spectroscopy has been used to study the molecular structure of a series of selected uranyl silicate minerals, including weeksite K2[(UO2)2(Si5O13)].H2O, soddyite [(UO2)2SiO4.2H2O] and haiweeite Ca[(UO2)2(Si5O12(OH)2](H2O)3 with UO2(2+)/SiO2 molar ratio 2:1 or 2:5. Raman spectra clearly show well resolved bands in the 750-800 cm-1 region and in the 950-1000 cm-1 region assigned to the nu1 modes of the (UO2)2+ units and to the (SiO4)4- tetrahedra. For example, soddyite is characterized by Raman bands at 828.0, 808.6 and 801.8 cm-1 (UO2)2+ (nu1), 909.6 and 898.0 cm-1 (UO2)2+ (nu3), 268.2, 257.8 and 246.9 cm-1 are assigned to the nu2 (delta) (UO2)2+. Coincidences of the nu1 (UO2)2+ and the nu1 (SiO4)4- is expected. Bands at 1082.2, 1071.2, 1036.3, 995.1 and 966.3 cm-1 are attributed to the nu3 (SiO4)4-. Sets of Raman bands in the 200-300 cm-1 region are assigned to nu2 (delta) (UO2)2+ and UO ligand vibrations. Multiple bands indicate the non-equivalence of the UO bonds and the lifting of the degeneracy of nu2 (delta) (UO2)2+ vibrations. The (SiO4)4- tetrahedral are characterized by bands in the 470-550 cm-1 and in the 390-420 cm-1 region. These bands are attributed to the nu4 and nu2 (SiO4)4- bending modes. The minerals show characteristic OH stretching bands in the 2900-3500 cm-1 and 3600-3700 cm-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号