首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19683篇
  免费   874篇
  国内免费   98篇
化学   13423篇
晶体学   126篇
力学   425篇
数学   2942篇
物理学   3739篇
  2023年   120篇
  2022年   175篇
  2021年   276篇
  2020年   381篇
  2019年   402篇
  2018年   236篇
  2017年   238篇
  2016年   611篇
  2015年   566篇
  2014年   650篇
  2013年   1061篇
  2012年   1140篇
  2011年   1285篇
  2010年   752篇
  2009年   667篇
  2008年   1056篇
  2007年   1044篇
  2006年   968篇
  2005年   915篇
  2004年   802篇
  2003年   672篇
  2002年   621篇
  2001年   327篇
  2000年   309篇
  1999年   288篇
  1998年   252篇
  1997年   237篇
  1996年   274篇
  1995年   261篇
  1994年   229篇
  1993年   233篇
  1992年   212篇
  1991年   183篇
  1990年   185篇
  1989年   181篇
  1988年   156篇
  1987年   131篇
  1986年   124篇
  1985年   185篇
  1984年   167篇
  1983年   141篇
  1982年   168篇
  1981年   163篇
  1980年   137篇
  1979年   143篇
  1978年   166篇
  1977年   124篇
  1976年   109篇
  1975年   127篇
  1974年   108篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Within the frame of an ongoing project on glycosidase inhibitors, we have been interested in the synthesis of “heteroglycals”, namely, glycal analogues with sulfur or nitrogen in the ring. Glycals2 are well known for their applications in sugar chemistry in particular for glycosyl transfer.3 They are also known as glycosidase inhibitors through a slow chemical reaction with the enzyme. Recently exo-glycals emerged as a new class of glycals4 which showed interesting features as glycosidase inhibitors but also as precursors of glycomimetics such as C-glycosides.5 We have undertaken investigations on related heteroglycals: such compounds are of interest because they combine a planar geometry at the anomeric center and a possible charge site - both elements known to be important to mimic the transition state of the enzymatic glycoside hydrolysis process.6  相似文献   
982.
The equilibrium of 1,3-dihydroxy-2-propanone (dihydroxyacetone) and 2,3-dihydroxypropanal (glyceraldehyde) and their dehydration reaction to methylglyoxal has been studied in the range of 180 - 240 °C under hydrothermal reaction conditions. A reaction mechanism for the conversion of these C-3 compounds was formulated which allowed the calculation of the product yields. In the investigated temperature range both compounds produce a maximum of 30-40% of methylglyoxal.  相似文献   
983.
Autonomous self‐propelled catalytic microjets are envisaged as an important technology in biomedical applications, including drug delivery, micro/nanosurgery, and active dynamic bioassays. The direct in vivo application of these microjets, specifically in blood, is however impeded by insufficient knowledge on the in vivo viability of the technique. This study highlights the effect of blood proteins on the viability of the microjets. The presence of blood proteins, including serum albumin and γ‐globulins at physiological concentrations, has been found to dramatically reduce the viability of the microjets. The reduction of viability has been measured in terms of a lower number of active microjets and a decrease in the velocity of propulsion. It is clear from this study that in order for microjets to function in biomedical applications, different modes of propulsion besides platinum‐catalyzed oxygen bubble ejection must be employed. These findings have serious implications for the biomedical applications of catalytic microjets.  相似文献   
984.
Two kinds of inorganic gadolinium(III)‐hydroxy “ladders”, [2×n] and [3×n], were successfully trapped in succinate (suc) coordination polymers, [Gd2(OH)2(suc)2(H2O)]n ? 2n H2O ( 1 ) and [Gd6(OH)8(suc)5(H2O)2]n ? 4n H2O ( 2 ), respectively. Such coordination polymers could be regarded as alternating inorganic–organic hybrid materials with relatively high density. Magnetic and heat capacity studies reveal a large cryogenic magnetocaloric effect (MCE) in both compounds, namely (ΔH=70 kG) 42.8 J kg?1 K?1 for complex 1 and 48.0 J kg?1 K?1 for complex 2 . The effect of the high density is evident, which gives very large volumetric MCEs up to 120 and 144 mJ cm?3 K?1 for complexes 1 and 2 , respectively.  相似文献   
985.
The synthesis and stereochemical assignment of two classes of iron‐containing nucleoside analogues, both of which contain a butadiene? Fe(CO)3 substructure, is described. The first type of compounds are Fe(CO)3‐complexed 3′‐alkenyl‐2′,3′‐dideoxy‐2′,3′‐dehydro nucleosides (2,5‐dihydrofuran derivatives), from which the second class of compounds is derived by formal replacement of the ring oxygen atom by a CH2 group (carbocyclic nucleoside analogues). These compounds were prepared in a stereoselective manner through the metal‐assisted introduction of the nucleobase. Whilst the furanoid intermediates were prepared from carbohydrates (such as methyl‐glucopyranoside), the carbocyclic compounds were obtained by using an intramolecular Pauson–Khand reaction. Stereochemical assignments based on NMR and CD spectroscopy were confirmed by X‐ray structural analysis. Biological investigations revealed that several of the complexes exhibited pronounced apoptosis‐inducing properties (through an unusual caspase 3‐independent but ROS‐dependent pathway). Furthermore, some structure–activity relationships were identified, also as a precondition for the design and synthesis of fluorescent and biotin‐labeled conjugates.  相似文献   
986.
A tetraoxo bis‐Zn(salphen) supramolecular host can bind various divalent metal salts, thereby providing access to trinuclear bifunctional systems that incorporate both Lewis acid sites and dynamically bound nucleophilic anions. The formation of these trinuclear species was investigated and their stability features were also determined. The application of these trinuclear complexes as bifunctional catalysts was evaluated in the formation of cyclic organic carbonates from epoxides and CO2. The catalytic data, in combination with control experiments, clearly demonstrate that these trinuclear compounds show much higher recycling potential compared to various control compounds and they can be used in up to five cycles without an observable loss in activity. Furthermore, this new recyclable catalytic system does not require any additives and can be applied under solvent‐free conditions.  相似文献   
987.
Graphene and graphene oxides are materials of significant interest in electrochemical devices such as supercapacitors, batteries, fuel cells, and sensors. Graphene oxides and reduced graphenes are typically prepared by oxidizing graphite in strong mineral acid mixtures with chlorate (Staudenmaier, Hofmann) or permanganate (Hummers, Tour) oxidants. Herein, we reveal that graphene oxides pose inherent electrochemistry, that is, they can be oxidized or reduced at relatively mild potentials (within the range ±1 V) that are lower than typical battery potentials. This inherent electrochemistry of graphene differs dramatically from that of the used oxidants. Graphene oxides prepared using chlorate exhibit chemically irreversible reductions, whereas graphene oxides prepared through permanganate‐based methods exhibit very unusual inherent chemically reversible electrochemistry of oxygen‐containing groups. Insight into the electrochemical behaviour was obtained through cyclic voltammetry, chronoamperometry, and X‐ray photoelectron spectroscopy experiments. Our findings are of extreme importance for the electrochemistry community as they reveal that electrode materials undergo cyclic changes in charge/discharge cycles, which has strong implications for energy‐storage and sensing devices.  相似文献   
988.
A covalently‐linked salen–C60 (H2L) assembly binds a range of transition metal cations in close proximity to the fullerene cage to give complexes [M(L)] (M=Mn, Co, Ni, Cu, Zn, Pd), [MCl(L)] (M=Cr, Fe) and [V(O)L]. Attaching salen covalently to the C60 cage only marginally slows down metal binding at the salen functionality compared to metal binding to free salen. Coordination of metal cations to salen–C60 introduces to these fullerene derivatives strong absorption bands across the visible spectrum from 400 to 630 nm, the optical features of which are controlled by the nature of the transition metal. The redox properties of the metal–salen–C60 complexes are determined both by the fullerene and by the nature of the transition metal, enabling the generation of a wide range of fullerene‐containing charged species, some of which possess two or more unpaired electrons. The presence of the fullerene cage enhances the affinity of these complexes for carbon nanostructures, such as single‐, double‐ and multiwalled carbon nanotubes and graphitised carbon nanofibres, without detrimental effects on the catalytic activity of the metal centre, as demonstrated in styrene oxidation catalysed by [Cu(L)]. This approach shows promise for applications of salen–C60 complexes in heterogeneous catalysis.  相似文献   
989.
The purpose of this systematic experimental and theoretical study is to deeply understand the unique bonding situation in ferrocene‐stabilized silylium ions as a function of the substituents at the silicon atom and to learn about the structure parameters that determine the 29Si NMR chemical shift and electrophilicity of these strong Lewis acids. For this, ten new members of the family of ferrocene‐stabilized silicon cations were prepared by a hydride abstraction reaction from silanes with the trityl cation and characterized by multinuclear 1H and 29Si NMR spectroscopy. A closer look at the NMR spectra revealed that additional minor sets of signals were not impurities but silylium ions with substitution patterns different from that of the initially formed cation. Careful assignment of these signals furnished experimental proof that sterically less hindered silylium ions are capable of exchanging substituents with unreacted silane precursors. Density functional theory calculations provided mechanistic insight into that substituent transfer in which the migrating group is exchanged between two silicon fragments in a concerted process involving a ferrocene‐bridged intermediate. Moreover, the quantum‐chemical analysis of the 29Si NMR chemical shifts revealed a linear relationship between δ(29Si) values and the Fe???Si distance for subsets of silicon cations. An electron localization function and electron localizability indicator analysis shows a three‐center two‐electron bonding attractor between the iron, silicon, and C′ipso atoms, clearly distinguishing the silicon cations from the corresponding carbenium ions and boranes. Correlations between 29Si NMR chemical shifts and Lewis acidity, evaluated in terms of fluoride ion affinities, are seen only for subsets of silylium ions, sometimes with non‐intuitive trends, indicating a complicated interplay of steric and electronic effects on the degree of the Fe???Si interaction.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号